cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A139631 Expansion of chi(x^5) / chi(-x^2) in powers of x where chi() is a Ramanujan theta function.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 2, 1, 2, 1, 3, 2, 4, 2, 5, 4, 6, 5, 8, 6, 11, 8, 13, 10, 16, 14, 20, 17, 24, 21, 31, 26, 37, 32, 44, 41, 54, 49, 64, 59, 79, 72, 94, 86, 111, 106, 132, 126, 156, 149, 187, 178, 219, 210, 257, 251, 302, 295, 352, 346, 416, 406, 483, 474, 560
Offset: 0

Views

Author

Michael Somos, Apr 27 2008

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + x^2 + x^4 + x^5 + 2*x^6 + x^7 + 2*x^8 + x^9 + 3*x^10 + 2*x^11 + ...
G.f. = 1/q + q^15 + q^31 + q^39 + 2*q^47 + q^55 + 2*q^63 + q^71 + 3*q^79 + ...
		

Crossrefs

Cf. A139632.

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ -x^2, x^2] QPochhammer[ -x^5, x^10], {x, 0, n}]; (* Michael Somos, Sep 07 2015 *)
    nmax = 40; CoefficientList[Series[Product[(1 + x^(2*k)) * (1 + x^(5*k)) / (1 + x^(10*k)), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 08 2015 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^4 + A) * eta(x^10 + A)^2 / (eta(x^2 + A) * eta(x^5 + A) * eta(x^20 + A)), n))};

Formula

Expansion of q^(1/8) * eta(q^4) * eta(q^10)^2 / (eta(q^2) * eta(q^5) * eta(q^20)) in powers of q.
G.f. is a period 1 Fourier series which satisfies f(-1 / (640 t)) = 2^(-1/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A139632.
G.f.: Product_{k>0} (1 + x^(2*k)) * (1 + x^(5*k)) / (1 + x^(10*k)).
a(n) = A139632(2*n).
a(n) ~ exp(Pi*sqrt(n/5)) / (4 * 5^(1/4) * n^(3/4)). - Vaclav Kotesovec, Sep 08 2015