A139632 Expansion of chi(q) * chi(-q^5) in powers of q where chi() is a Ramanujan theta function.
1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 2, 3, 3, 2, 3, 4, 3, 2, 4, 5, 4, 4, 5, 6, 6, 5, 6, 8, 7, 6, 8, 11, 10, 8, 11, 13, 11, 10, 13, 16, 15, 14, 17, 20, 18, 17, 20, 24, 23, 21, 25, 31, 29, 26, 32, 37, 34, 32, 39, 44, 42, 41, 47, 54, 52, 49
Offset: 0
Keywords
Examples
G.f. = 1 + x + x^3 + x^4 + x^7 + x^8 + x^9 + x^10 + x^11 + 2*x^12 + x^13 + ... G.f. = 1/q + q^3 + q^11 + q^15 + q^27 + q^31 + q^35 + q^39 + q^43 + 2*q^47 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Programs
-
Mathematica
a[ n_] := SeriesCoefficient[ QPochhammer[ -x, x^2] QPochhammer[ x^5, x^10], {x, 0, n}]; (* Michael Somos, Sep 07 2015 *) nmax = 100; CoefficientList[Series[Product[(1 + x^k) / ((1 + x^(2*k)) * (1 + x^(5*k))), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 08 2015 *)
-
PARI
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^2 * eta(x^5 + A) / (eta(x + A) * eta(x^4 + A) * eta(x^10 + A)), n))};
Formula
Expansion of q^(1/4) * eta(q^2)^2 * eta(q^5) / (eta(q) * eta(q^4) * eta(q^10)) in powers of q.
Euler transform of period 20 sequence [ 1, -1, 1, 0, 0, -1, 1, 0, 1, -1, 1, 0, 1, -1, 0, 0, 1, -1, 1, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (640 t)) = 2^(1/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A139631.
G.f.: Product_{k>0} (1 + x^k) / ((1 + x^(2*k)) * (1 + x^(5*k))).
a(n) = (-1)^floor((n + 1)/2) * A145705(n). - Michael Somos, Sep 07 2015
a(n) ~ exp(Pi*sqrt(n/10)) / (2^(5/4) * 5^(1/4) * n^(3/4)). - Vaclav Kotesovec, Sep 08 2015
Comments