A139631 Expansion of chi(x^5) / chi(-x^2) in powers of x where chi() is a Ramanujan theta function.
1, 0, 1, 0, 1, 1, 2, 1, 2, 1, 3, 2, 4, 2, 5, 4, 6, 5, 8, 6, 11, 8, 13, 10, 16, 14, 20, 17, 24, 21, 31, 26, 37, 32, 44, 41, 54, 49, 64, 59, 79, 72, 94, 86, 111, 106, 132, 126, 156, 149, 187, 178, 219, 210, 257, 251, 302, 295, 352, 346, 416, 406, 483, 474, 560
Offset: 0
Keywords
Examples
G.f. = 1 + x^2 + x^4 + x^5 + 2*x^6 + x^7 + 2*x^8 + x^9 + 3*x^10 + 2*x^11 + ... G.f. = 1/q + q^15 + q^31 + q^39 + 2*q^47 + q^55 + 2*q^63 + q^71 + 3*q^79 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Crossrefs
Cf. A139632.
Programs
-
Mathematica
a[ n_] := SeriesCoefficient[ QPochhammer[ -x^2, x^2] QPochhammer[ -x^5, x^10], {x, 0, n}]; (* Michael Somos, Sep 07 2015 *) nmax = 40; CoefficientList[Series[Product[(1 + x^(2*k)) * (1 + x^(5*k)) / (1 + x^(10*k)), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 08 2015 *)
-
PARI
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^4 + A) * eta(x^10 + A)^2 / (eta(x^2 + A) * eta(x^5 + A) * eta(x^20 + A)), n))};
Formula
Expansion of q^(1/8) * eta(q^4) * eta(q^10)^2 / (eta(q^2) * eta(q^5) * eta(q^20)) in powers of q.
G.f. is a period 1 Fourier series which satisfies f(-1 / (640 t)) = 2^(-1/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A139632.
G.f.: Product_{k>0} (1 + x^(2*k)) * (1 + x^(5*k)) / (1 + x^(10*k)).
a(n) = A139632(2*n).
a(n) ~ exp(Pi*sqrt(n/5)) / (4 * 5^(1/4) * n^(3/4)). - Vaclav Kotesovec, Sep 08 2015
Comments