cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A333157 Triangle read by rows: T(n,k) is the number of n X n symmetric binary matrices with k ones in every row and column.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 4, 1, 1, 10, 18, 10, 1, 1, 26, 112, 112, 26, 1, 1, 76, 820, 1760, 820, 76, 1, 1, 232, 6912, 35150, 35150, 6912, 232, 1, 1, 764, 66178, 848932, 1944530, 848932, 66178, 764, 1, 1, 2620, 708256, 24243520, 133948836, 133948836, 24243520, 708256, 2620, 1
Offset: 0

Views

Author

Andrew Howroyd, Mar 09 2020

Keywords

Comments

T(n,k) is the number of k-regular symmetric relations on n labeled nodes.
T(n,k) is the number of k-regular graphs with half-edges on n labeled vertices.
Terms may be computed without generating all graphs by enumerating the number of graphs by degree sequence. A PARI program showing this technique is given below. Burnside's lemma as applied in A122082 and A000666 can be used to extend this method to the case of unlabeled vertices A333159 and A333161 respectively.

Examples

			Triangle begins:
  1,
  1,   1;
  1,   2,     1;
  1,   4,     4,      1;
  1,  10,    18,     10,       1;
  1,  26,   112,    112,      26,      1;
  1,  76,   820,   1760,     820,     76,     1;
  1, 232,  6912,  35150,   35150,   6912,   232,   1;
  1, 764, 66178, 848932, 1944530, 848932, 66178, 764, 1;
  ...
		

Crossrefs

Row sums are A322698.
Central coefficients are A333164.
Cf. A188448 (transposed as array).

Programs

  • PARI
    \\ See script in A295193 for comments.
    GraphsByDegreeSeq(n, limit, ok)={
      local(M=Map(Mat([x^0,1])));
      my(acc(p,v)=my(z); mapput(M, p, if(mapisdefined(M, p, &z), z+v, v)));
      my(recurse(r,p,i,q,v,e) = if(e<=limit && poldegree(q)<=limit, if(i<0, if(ok(x^e+q, r), acc(x^e+q, v)), my(t=polcoeff(p,i)); for(k=0,t,self()(r,p,i-1,(t-k+x*k)*x^i+q,binomial(t,k)*v,e+k)))));
      for(k=2, n, my(src=Mat(M)); M=Map(); for(i=1, matsize(src)[1], my(p=src[i,1]); recurse(n-k, p, poldegree(p), 0, src[i,2], 0))); Mat(M);
    }
    Row(n)={my(M=GraphsByDegreeSeq(n, n\2, (p,r)->poldegree(p)-valuation(p,x) <= r + 1), v=vector(n+1)); for(i=1, matsize(M)[1], my(p=M[i,1], d=poldegree(p)); v[1+d]+=M[i,2]; if(pollead(p)==n, v[2+d]+=M[i,2])); for(i=1, #v\2, v[#v+1-i]=v[i]); v}
    for(n=0, 8, print(Row(n))) \\ Andrew Howroyd, Mar 14 2020

Formula

T(n,k) = T(n,n-k).

A188448 T(n,k)=Number of (n*k)Xk binary arrays with nonzero rows in decreasing order, no more than 2 ones in any row and exactly n ones in every column.

Original entry on oeis.org

1, 2, 0, 4, 1, 0, 10, 4, 0, 0, 26, 18, 1, 0, 0, 76, 112, 10, 0, 0, 0, 232, 820, 112, 1, 0, 0, 0, 764, 6912, 1760, 26, 0, 0, 0, 0, 2620, 66178, 35150, 820, 1, 0, 0, 0, 0, 9496, 708256, 848932, 35150, 76, 0, 0, 0, 0, 0, 35696, 8372754, 24243520, 1944530, 6912, 1, 0, 0, 0, 0
Offset: 1

Views

Author

R. H. Hardin Mar 31 2011

Keywords

Comments

Table starts
.1.2.4.10..26...76...232.....764......2620........9496.........35696
.0.1.4.18.112..820..6912...66178....708256.....8372754.....108306280
.0.0.1.10.112.1760.35150..848932..24243520...805036704...30649435140
.0.0.0..1..26..820.35150.1944530.133948836.11234051976.1127512146540
.0.0.0..0...1...76..6912..848932.133948836.26615510712
.0.0.0..0...0....1...232...66178..24243520
.0.0.0..0...0....0.....1.....764
.0.0.0..0...0....0.....0
.0.0.0..0...0....0
.0.0.0..0...0

Examples

			All solutions for 9X3
..1..1..0
..1..0..1
..1..0..0
..0..1..1
..0..1..0
..0..0..1
..0..0..0
..0..0..0
..0..0..0
		

Crossrefs

Row 1 is A000085
Row 2 is A000986
Row 3 is A110040
Row 4 is A139670
Row 5 is A139671
Row 6 is A139673
Row 7 is A139674
Row 8 is A139675
Showing 1-2 of 2 results.