cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A333157 Triangle read by rows: T(n,k) is the number of n X n symmetric binary matrices with k ones in every row and column.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 4, 1, 1, 10, 18, 10, 1, 1, 26, 112, 112, 26, 1, 1, 76, 820, 1760, 820, 76, 1, 1, 232, 6912, 35150, 35150, 6912, 232, 1, 1, 764, 66178, 848932, 1944530, 848932, 66178, 764, 1, 1, 2620, 708256, 24243520, 133948836, 133948836, 24243520, 708256, 2620, 1
Offset: 0

Views

Author

Andrew Howroyd, Mar 09 2020

Keywords

Comments

T(n,k) is the number of k-regular symmetric relations on n labeled nodes.
T(n,k) is the number of k-regular graphs with half-edges on n labeled vertices.
Terms may be computed without generating all graphs by enumerating the number of graphs by degree sequence. A PARI program showing this technique is given below. Burnside's lemma as applied in A122082 and A000666 can be used to extend this method to the case of unlabeled vertices A333159 and A333161 respectively.

Examples

			Triangle begins:
  1,
  1,   1;
  1,   2,     1;
  1,   4,     4,      1;
  1,  10,    18,     10,       1;
  1,  26,   112,    112,      26,      1;
  1,  76,   820,   1760,     820,     76,     1;
  1, 232,  6912,  35150,   35150,   6912,   232,   1;
  1, 764, 66178, 848932, 1944530, 848932, 66178, 764, 1;
  ...
		

Crossrefs

Row sums are A322698.
Central coefficients are A333164.
Cf. A188448 (transposed as array).

Programs

  • PARI
    \\ See script in A295193 for comments.
    GraphsByDegreeSeq(n, limit, ok)={
      local(M=Map(Mat([x^0,1])));
      my(acc(p,v)=my(z); mapput(M, p, if(mapisdefined(M, p, &z), z+v, v)));
      my(recurse(r,p,i,q,v,e) = if(e<=limit && poldegree(q)<=limit, if(i<0, if(ok(x^e+q, r), acc(x^e+q, v)), my(t=polcoeff(p,i)); for(k=0,t,self()(r,p,i-1,(t-k+x*k)*x^i+q,binomial(t,k)*v,e+k)))));
      for(k=2, n, my(src=Mat(M)); M=Map(); for(i=1, matsize(src)[1], my(p=src[i,1]); recurse(n-k, p, poldegree(p), 0, src[i,2], 0))); Mat(M);
    }
    Row(n)={my(M=GraphsByDegreeSeq(n, n\2, (p,r)->poldegree(p)-valuation(p,x) <= r + 1), v=vector(n+1)); for(i=1, matsize(M)[1], my(p=M[i,1], d=poldegree(p)); v[1+d]+=M[i,2]; if(pollead(p)==n, v[2+d]+=M[i,2])); for(i=1, #v\2, v[#v+1-i]=v[i]); v}
    for(n=0, 8, print(Row(n))) \\ Andrew Howroyd, Mar 14 2020

Formula

T(n,k) = T(n,n-k).

A139670 Number of n X n symmetric binary matrices with all row sums 4.

Original entry on oeis.org

1, 26, 820, 35150, 1944530, 133948836, 11234051976, 1127512146540, 133475706272700, 18406586045919060, 2925154024273348296, 530686776655470875076, 109004840145995702773410, 25164525076896596670014400, 6486836210471246515195539840, 1856264107759263993451053077856
Offset: 4

Views

Author

R. H. Hardin, Jun 12 2008

Keywords

Comments

From R. J. Mathar, Apr 07 2017: (Start)
These are the row sums of the following triangle, which shows in row n and column t the number of symmetric n X n {0,1}-matrices with trace t and 4 ones in each row and each column, 0 <= t <= n:
0: 1;
1: 0, 0;
2: 0, 0, 0;
3: 0, 0, 0, 0;
4: 0, 0, 0, 0, 1;
5: 1, 0, 10, 0, 15, 0;
6: 15, 0, 270, 0, 465, 0, 70;
7: 465, 0, 9660, 0, 19355, 0, 5670, 0;
(End)

Examples

			a(4) = 1:
  1 1 1 1
  1 1 1 1
  1 1 1 1
  1 1 1 1
		

Crossrefs

Column k=4 of A333157 and row 4 of A188448.
Cf. A000085 (row sums 1), A000986 (row sums 2), A110040 (row sums 3).

Extensions

Terms a(13) and beyond from Andrew Howroyd, Mar 09 2020

A139671 Number of n X n symmetric binary matrices with all row sums 5.

Original entry on oeis.org

1, 76, 6912, 848932, 133948836, 26615510712, 6549149852112, 1966499966796816, 711040444591249476, 305907023641901084832, 154921887640109512226304, 91469751377953081098144816, 62419855497729620428436222688, 48849705066296300911892229634944
Offset: 5

Views

Author

R. H. Hardin, Jun 12 2008

Keywords

Crossrefs

Column k=5 of A333157 and row 5 of A188448.

Extensions

Terms a(13) and beyond from Andrew Howroyd, Mar 09 2020

A139673 Number of n X n symmetric binary matrices with all row sums 6.

Original entry on oeis.org

1, 232, 66178, 24243520, 11234051976, 6549149852112, 4762109992158288, 4274712091685443584, 4686484162304929219950, 6209619146419137708859600, 9845751579221258486943505348, 18509102695712474753650903363840, 40904306737052771732376660591663712
Offset: 6

Views

Author

R. H. Hardin, Jun 12 2008

Keywords

Crossrefs

Column k=6 of A333157 and row 6 of A188448.

Extensions

Terms a(13) and beyond from Andrew Howroyd, Mar 09 2020

A139674 Number of n X n symmetric binary matrices with all row sums 7.

Original entry on oeis.org

1, 764, 708256, 805036704, 1127512146540, 1966499966796816, 4274712091685443584, 11528251571501588791296, 38295413179145036856212700, 155411811543624388078758718000, 763997249847515085736557734880512, 4511824317564827934662170498445281792
Offset: 7

Views

Author

R. H. Hardin, Jun 12 2008

Keywords

Crossrefs

Column k=7 of A333157 and row 7 of A188448.

Extensions

Terms a(13) and beyond from Andrew Howroyd, Mar 09 2020

A139675 Number of n X n symmetric binary matrices with all row sums 8.

Original entry on oeis.org

1, 2620, 8372754, 30649435140, 133475706272700, 711040444591249476, 4686484162304929219950, 38295413179145036856212700, 386860001875783390762182911250, 4805622573099374975572752075805000, 72929153106385401417284439399165879652
Offset: 8

Views

Author

R. H. Hardin, Jun 12 2008

Keywords

Crossrefs

Column k=8 of A333157 and row 8 of A188448.

Extensions

Terms a(13) and beyond from Andrew Howroyd, Mar 09 2020
Showing 1-6 of 6 results.