cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A139691 Discriminants of the normalized general quintic polynomials with nonnegative coefficients.

Original entry on oeis.org

0, 12, 40, 48, 49, 69, 84, 92, 93, 117, 124, 125, 128, 132, 144, 161, 176, 184, 189, 217, 229, 240, 245, 256, 257, 272, 312, 320, 324, 332, 333, 340, 348, 392, 400, 432, 448, 456, 472, 512, 549, 588, 592, 605, 609, 688, 697, 708, 725, 761, 804, 832, 836, 837
Offset: 1

Views

Author

Artur Jasinski, Apr 29 2008

Keywords

Comments

Possible discriminants of the general normalized quintic polynomial x^5+b*x^4+c*x^3+d*x^2+e*x+f with b,c,d,e,f>=0

References

  • Mohammad K. Azarian, On the Hyperfactorial Function, Hypertriangular Function, and the Discriminants of Certain Polynomials, International Journal of Pure and Applied Mathematics, Vol. 36, No. 2, 2007, pp. 251-257. Mathematical Reviews, MR2312537. Zentralblatt MATH, Zbl 1133.11012.

Crossrefs

Programs

  • Mathematica
    aa = {}; a = 1; Do[Print[f]; Do[Do[Do[Do[k = b^2 c^2 d^2 e^2 - 4 a c^3 d^2 e^2 - 4 b^3 d^3 e^2 + 18 a b c d^3 e^2 - 27 a^2 d^4 e^2 - 4 b^2 c^3 e^3 + 16 a c^4 e^3 + 18 b^3 c d e^3 - 80 a b c^2 d e^3 - 6 a b^2 d^2 e^3 + 144 a^2 c d^2 e^3 - 27 b^4 e^4 + 144 a b^2 c e^4 - 128 a^2 c^2 e^4 - 192 a^2 b d e^4 + 256 a^3 e^5 - 4 b^2 c^2 d^3 f + 16 a c^3 d^3 f + 16 b^3 d^4 f - 72 a b c d^4 f + 108 a^2 d^5 f + 18 b^2 c^3 d e f - 72 a c^4 d e f - 80 b^3 c d^2 e f + 356 a b c^2 d^2 e f + 24 a b^2 d^3 e f - 630 a^2 c d^3 e f - 6 b^3 c^2 e^2 f + 24 a b c^3 e^2 f + 144 b^4 d e^2 f - 746 a b^2 c d e^2 f + 560 a^2 c^2 d e^2 f + 1020 a^2 b d^2 e^2 f - 36 a b^3 e^3 f + 160 a^2 b c e^3 f - 1600 a^3 d e^3 f - 27 b^2 c^4 f^2 + 108 a c^5 f^2 + 144 b^3 c^2 d f^2 - 630 a b c^3 d f^2 - 128 b^4 d^2 f^2 + 560 a b^2 c d^2 f^2 + 825 a^2 c^2 d^2 f^2 - 900 a^2 b d^3 f^2 - 192 b^4 c e f^2 + 1020 a b^2 c^2 e f^2 - 900 a^2 c^3 e f^2 + 160 a b^3 d e f^2 - 2050 a^2 b c d e f^2 + 2250 a^3 d^2 e f^2 - 50 a^2 b^2 e^2 f^2 + 2000 a^3 c e^2 f^2 + 256 b^5 f^3 - 1600 a b^3 c f^3 + 2250 a^2 b c^2 f^3 + 2000 a^2 b^2 d f^3 - 3750 a^3 c d f^3 - 2500 a^3 b e f^3 + 3 125 a^4 f^4; If[k > 0 && k < 1000, AppendTo[aa, k]], {b, 0, 30}], {c, 0, 30}], {d, 0, 30}], {e, 0, 30}], {f, 0, 30}]; Union[aa] (*Artur Jasinski*)