A139697 Binomial transform of [1, 12, 12, 12, ...].
1, 13, 37, 85, 181, 373, 757, 1525, 3061, 6133, 12277, 24565, 49141, 98293, 196597, 393205, 786421, 1572853, 3145717, 6291445, 12582901, 25165813, 50331637, 100663285, 201326581, 402653173, 805306357, 1610612725, 3221225461, 6442450933, 12884901877
Offset: 1
Examples
a(4) = 85 = (1, 3, 3, 1) dot (1, 12, 12, 12) = (1 + 36 + 36 + 12).
Links
- Index entries for linear recurrences with constant coefficients, signature (3,-2).
Programs
-
Maple
seq(12*2^(n-1)-11,n=1..25); # Emeric Deutsch, May 05 2008
-
Mathematica
a=1; lst={a}; k=12; Do[a+=k; AppendTo[lst, a]; k+=k, {n, 0, 5!}]; lst (* Vladimir Joseph Stephan Orlovsky, Dec 17 2008 *)
Formula
A007318 * [1, 12, 12, 12, ...].
a(n) = 12*2^(n-1) - 11. - Emeric Deutsch, May 05 2008
a(n) = 2*a(n-1) + 11 (with a(1)=1). - Vincenzo Librandi, Nov 24 2010
From Colin Barker, Oct 10 2013: (Start)
a(n) = 3*2^(n+1) - 11.
a(n) = 3*a(n-1) - 2*a(n-2).
G.f.: x*(10*x+1) / ((x-1)*(2*x-1)). (End)
Extensions
More terms from Emeric Deutsch, May 05 2008
More terms from Colin Barker, Oct 10 2013
Comments