cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A139756 Binomial transform of A004526.

Original entry on oeis.org

0, 0, 1, 4, 12, 32, 80, 192, 448, 1024, 2304, 5120, 11264, 24576, 53248, 114688, 245760, 524288, 1114112, 2359296, 4980736, 10485760, 22020096, 46137344, 96468992, 201326592, 419430400, 872415232, 1811939328, 3758096384, 7784628224, 16106127360, 33285996544
Offset: 0

Views

Author

Paul Curtz, May 19 2008

Keywords

Comments

Essentially the same as A001787, A097067, A085750 and A118442.
Also: self-convolution of A131577. - R. J. Mathar, May 22 2008
Let S be a subset of {1,2,...,n}. A succession in S is a subset of the form {i,i+1}. a(n) is the total number of successions in all subsets of {1,2,...,n}. a(n) = Sum_{k>=1} A076791(n,k)*k. - Geoffrey Critzer, Mar 18 2012.

Examples

			a(4) = 12 because we have {1,2}, {2,3}, {3,4}, {1,2,4}, {1,3,4} with one succession; {1,2,3}, {2,3,4} with two successions; and {1,2,3,4} with three successions. - _Geoffrey Critzer_, Mar 18 2012.
		

References

  • I Goulden and D Jackson, Combinatorial Enumeration, John Wiley and Sons, 1983, page 55.

Crossrefs

Programs

  • Mathematica
    nn = 30; a = 1/(1 - y x); b = x/(1 - y x) + 1; c = 1/(1 - x); CoefficientList[ D[Series[c b/(1 - (a x^2 c)), {x, 0, nn}], y] /. y -> 1, x]  (* Geoffrey Critzer, Mar 18 2012 *)

Formula

O.g.f.: x^2/(1-2*x)^2. a(n) = (n-1)*2^n/4 if n>0. - R. J. Mathar, May 22 2008
a(n) = A097067(n), n>0. - R. J. Mathar, Nov 03 2008
a(n) = A168511(n+1,n). - Philippe Deléham, Mar 20 2013
a(n) = 2*a(n-1) + 2^(n-2), n>=2. - Philippe Deléham, Mar 20 2013

Extensions

More terms from R. J. Mathar, May 22 2008