A139756 Binomial transform of A004526.
0, 0, 1, 4, 12, 32, 80, 192, 448, 1024, 2304, 5120, 11264, 24576, 53248, 114688, 245760, 524288, 1114112, 2359296, 4980736, 10485760, 22020096, 46137344, 96468992, 201326592, 419430400, 872415232, 1811939328, 3758096384, 7784628224, 16106127360, 33285996544
Offset: 0
Examples
a(4) = 12 because we have {1,2}, {2,3}, {3,4}, {1,2,4}, {1,3,4} with one succession; {1,2,3}, {2,3,4} with two successions; and {1,2,3,4} with three successions. - _Geoffrey Critzer_, Mar 18 2012.
References
- I Goulden and D Jackson, Combinatorial Enumeration, John Wiley and Sons, 1983, page 55.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-4).
Programs
-
Mathematica
nn = 30; a = 1/(1 - y x); b = x/(1 - y x) + 1; c = 1/(1 - x); CoefficientList[ D[Series[c b/(1 - (a x^2 c)), {x, 0, nn}], y] /. y -> 1, x] (* Geoffrey Critzer, Mar 18 2012 *)
Formula
O.g.f.: x^2/(1-2*x)^2. a(n) = (n-1)*2^n/4 if n>0. - R. J. Mathar, May 22 2008
a(n) = A097067(n), n>0. - R. J. Mathar, Nov 03 2008
a(n) = A168511(n+1,n). - Philippe Deléham, Mar 20 2013
a(n) = 2*a(n-1) + 2^(n-2), n>=2. - Philippe Deléham, Mar 20 2013
Extensions
More terms from R. J. Mathar, May 22 2008
Comments