cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A139798 Coefficient of x^5 in (1-x-x^2)^(-n).

Original entry on oeis.org

8, 38, 111, 256, 511, 924, 1554, 2472, 3762, 5522, 7865, 10920, 14833, 19768, 25908, 33456, 42636, 53694, 66899, 82544, 100947, 122452, 147430, 176280, 209430, 247338, 290493, 339416, 394661, 456816, 526504, 604384, 691152, 787542
Offset: 1

Views

Author

Sergio Falcon, May 22 2008

Keywords

Comments

The coefficient of x^5 in (1-x-x^2)^(-n) is the coefficient of x^5 in (1 + x + 2x^2 + 3x^3 + 5x^4 + 8x^5)^n. Using the multinomial theorem one then finds that a(n) = n(n+1)(n+2)(n^2 + 27n + 132)/5!
The inverse binomial transform yields 8,30,43,29,9,1,0,0,... (0 continued) - R. J. Mathar, May 23 2008

References

  • Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992.

Crossrefs

Programs

  • Mathematica
    a[n_] := n(n + 1)(n + 2)(n^2 + 27n + 132)/5! Do[Print[n, " ", a[n]], {n, 1, 25}]
    LinearRecurrence[{6,-15,20,-15,6,-1},{8,38,111,256,511,924},40] (* Harvey P. Dale, Oct 13 2015 *)
  • PARI
    a(n)=binomial(n+2,3)*(n^2+27*n+132)/20 \\ Charles R Greathouse IV, Jul 29 2011

Formula

a(n) = n(n+1)(n+2)(n^2 + 27n + 132)/5!
O.g.f.: x(3x-4)(x-2)/(1-x)^6. - R. J. Mathar, May 23 2008

Extensions

More terms from R. J. Mathar, May 23 2008