A139798 Coefficient of x^5 in (1-x-x^2)^(-n).
8, 38, 111, 256, 511, 924, 1554, 2472, 3762, 5522, 7865, 10920, 14833, 19768, 25908, 33456, 42636, 53694, 66899, 82544, 100947, 122452, 147430, 176280, 209430, 247338, 290493, 339416, 394661, 456816, 526504, 604384, 691152, 787542
Offset: 1
References
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992.
Links
- Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
Programs
-
Mathematica
a[n_] := n(n + 1)(n + 2)(n^2 + 27n + 132)/5! Do[Print[n, " ", a[n]], {n, 1, 25}] LinearRecurrence[{6,-15,20,-15,6,-1},{8,38,111,256,511,924},40] (* Harvey P. Dale, Oct 13 2015 *)
-
PARI
a(n)=binomial(n+2,3)*(n^2+27*n+132)/20 \\ Charles R Greathouse IV, Jul 29 2011
Formula
a(n) = n(n+1)(n+2)(n^2 + 27n + 132)/5!
O.g.f.: x(3x-4)(x-2)/(1-x)^6. - R. J. Mathar, May 23 2008
Extensions
More terms from R. J. Mathar, May 23 2008
Comments