A139813 A polynomial triangle based on cross binomial Hodge number matrices/ Hodge diamonds that represent Calabi-Yau type binomials and their monomials.
1, 2, 2, 2, 2, 2, 2, 6, 6, 2, 2, 8, 6, 8, 2, 2, 10, 20, 20, 10, 2, 2, 12, 30, 20, 30, 12, 2, 2, 14, 42, 70, 70, 42, 14, 2, 2, 16, 56, 112, 70, 112, 56, 16, 2, 2, 18, 72, 168, 252, 252, 168, 72, 18, 2, 2, 20, 90, 240, 420, 252, 420, 240, 90, 20, 2
Offset: 1
Examples
{1}, {2, 2}, {2, 2, 2}, {2, 6, 6, 2}, {2, 8, 6, 8, 2}, {2, 10, 20, 20, 10, 2}, {2, 12, 30, 20, 30, 12, 2}, {2, 14, 42, 70, 70, 42, 14, 2}, {2, 16, 56, 112, 70, 112, 56, 16, 2}, {2, 18, 72, 168, 252, 252, 168, 72, 18, 2}, {2, 20, 90, 240, 420, 252, 420, 240, 90, 20, 2}
References
- Christian Meyer, Modular Calabi-Yau threefolds, 2005.
Links
- Rolf Schimmrigk Mirror Symmetry and String Vacua from a Special Class of Fano Varieties, arXiv:hep-th/9405086, 1994.
Programs
-
Mathematica
T[n_, m_, d_] := If[n - m == 0, Binomial[d, n], If[d - n - m == 0, Binomial[d, m], 0]]; M[d_] := Table[T[n, m, d], {n, 0, d}, {m, 0, d}]; p[x_, y_, d_] := Sum[Sum[M[d][[k, m]]*x^(k - 1)*y^(m - 1), {m, 1, d + 1}], {k, 1, d + 1}]; g = Table[ExpandAll[p[x, 1, d]], {d, 1, 10}]; a = Join[{{1}}, Table[CoefficientList[p[x, 1, w], x], {w, 1, 10}]]; Flatten[a] Join[{1}, Table[Apply[Plus, CoefficientList[p[x, 1, w], x]], {w, 1, 10}]];
Comments