cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A159478 a(n) = 2^(n^2+n) * C(1/2^n, n).

Original entry on oeis.org

1, 2, -6, 140, -14570, 6283452, -11049839724, 78893138035608, -2282580118745565210, 267227101453296251927660, -126415241162450125116966673796, 241332381844862786094865482962203112, -1857025703922208959523779453799872508349700
Offset: 0

Views

Author

Paul D. Hanna, Apr 19 2009

Keywords

Comments

Sum_{n>=0} C(1/2^n, n) = 1.4306345243611686570661803375590... (A139823).

Examples

			G.f.: A(x) = 1 +2*x/2^2 -6*x^2/2^6 +140*x^3/2^12 -14570*x^4/2^20 +...
A(x) = 1 + log(1+x/2) + log(1+x/4)^2/2! + log(1+x/8)^3/3! +...
Illustrate a(n) = [x^n] (1 + 2^(n+1)*x)^(1/2^n):
(1+4*x)^(1/2) = 1 + (2)*x - 2*x^2 + 4*x^3 - 10*x^4 +...
(1+8*x)^(1/4) = 1 + 2*x - (6)*x^2 + 28*x^3 - 154*x^4 +...
(1+16*x)^(1/8) = 1 + 2*x - 14*x^2 + (140)*x^3 - 1610*x^4 +...
(1+32*x)^(1/16) = 1 + 2*x - 30*x^2 + 620*x^3 - (14570)*x^4 +...
(1+64*x)^(1/32) = 1 + 2*x - 62*x^2 + 2604*x^3 - 123690*x^4 + (6283452)*x^5 +...
		

Crossrefs

Cf. A139823.

Programs

  • Magma
    SetDefaultRealField(RealField(250)); [Round(2^(n + n^2)*Gamma(1 + 1/2^n)/(Gamma(n+1)*Gamma(1 + 1/2^n - n))): n in [0..25]]; // G. C. Greubel, Jun 12 2018
  • Mathematica
    Table[2^(n^2 + n)*Binomial[1/2^n, n], {n, 0, 25}] (* G. C. Greubel, Jun 12 2018 *)
  • PARI
    a(n)=2^(n^2+n)*binomial(1/2^n,n)
    

Formula

G.f.: Sum_{n>=0} a(n)*x^n/2^(n^2+n) = Sum_{n>=0} log(1 + x/2^n)^n/n!.
a(n) = [x^n] (1 + 2^(n+1)*x)^(1/2^n).
a(n) ~ -(-1)^n * 2^(n^2)/n. - Vaclav Kotesovec, Jun 29 2018

A139824 Decimal expansion of constant c = Sum_{n>=0} C(1/2^n, n)*2^n.

Original entry on oeis.org

1, 7, 7, 7, 2, 0, 8, 0, 1, 6, 1, 1, 9, 6, 9, 1, 6, 2, 6, 2, 3, 1, 1, 2, 5, 1, 9, 7, 2, 4, 4, 0, 3, 5, 3, 3, 1, 2, 3, 8, 0, 0, 6, 4, 1, 2, 5, 1, 1, 2, 6, 3, 1, 2, 3, 3, 2, 2, 9, 0, 6, 6, 6, 3, 2, 1, 6, 2, 0, 0, 5, 5, 8, 7, 8, 9, 7, 5, 2, 3, 4, 5, 6, 7, 6, 6, 4, 2, 8, 5, 4, 1, 7, 8, 9, 6, 5, 9, 4, 7, 5, 0, 4, 5, 1
Offset: 1

Views

Author

Paul D. Hanna, May 01 2008

Keywords

Examples

			c = 1.77720801611969162623112519724403533123800641251126312332290666...
c = 1 + (1/2)*2 - (3/32)*2^2 + (35/1024)*2^3 - (7285/524288)*2^4 +...
c = 1 + log(2) + log(3/2)^2/2! + log(5/4)^3/3! + log(9/8)^4/4! +...
The formulas for this constant illustrate the identity:
Sum_{n>=0} log(1 + q^n*x)^n*y^n/n! = Sum_{n>=0} binomial(q^n*y, n)*x^n.
		

Crossrefs

Programs

  • PARI
    a(n)=local(c=sum(m=0,n+2,log(1+2/2^m)^m/m!));floor(c*10^n)%10

Formula

c = Sum_{n>=0} log(1 + 2/2^n)^n/n! .

A139825 Decimal expansion of constant c = Sum_{n>=0} C(3/2^n, n).

Original entry on oeis.org

2, 4, 4, 7, 8, 6, 2, 6, 0, 5, 7, 5, 1, 5, 7, 7, 0, 3, 5, 0, 3, 2, 2, 7, 0, 0, 5, 6, 4, 9, 1, 2, 5, 1, 5, 3, 5, 1, 6, 3, 2, 6, 2, 9, 6, 4, 9, 4, 1, 4, 3, 1, 4, 6, 3, 3, 8, 8, 3, 8, 1, 6, 7, 8, 1, 8, 9, 7, 9, 3, 0, 5, 7, 8, 0, 8, 5, 5, 0, 0, 4, 7, 9, 7, 7, 6, 0, 1, 6, 6, 3, 3, 8, 1, 9, 8, 5, 7, 2, 6, 5, 8, 5, 9, 9
Offset: 1

Views

Author

Paul D. Hanna, May 01 2008

Keywords

Examples

			c = 2.44786260575157703503227005649125153516326296494143146338838167...
c = 1 + 3/2 - 3/32 + 65/1024 - 16965/524288 + 4112925/268435456 +...
c = 1 + log(3/2)*3 + log(5/4)^2*3^2/2! + log(9/8)^3*3^3/3! +...
The formulas for this constant illustrate the identity:
Sum_{n>=0} log(1 + q^n*x)^n*y^n/n! = Sum_{n>=0} binomial(q^n*y, n)*x^n.
		

Crossrefs

Programs

  • PARI
    a(n)=local(c=sum(m=0,n+2,log(1+1/2^m)^m*3^m/m!));floor(c*10^n)%10

Formula

c = Sum_{n>=0} log(1 + 1/2^n)^n*3^n/n! .
Showing 1-3 of 3 results.