cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A139843 Primes of the form 6x^2 + 17y^2.

Original entry on oeis.org

17, 23, 41, 71, 113, 167, 233, 311, 401, 431, 449, 479, 503, 521, 617, 641, 719, 743, 809, 839, 857, 881, 887, 911, 929, 983, 1031, 1049, 1151, 1193, 1217, 1289, 1319, 1367, 1433, 1439, 1553, 1559, 1601, 1697, 1847, 2063, 2081, 2111, 2153, 2207
Offset: 1

Views

Author

T. D. Noe, May 02 2008

Keywords

Comments

Discriminant = -408. See A139827 for more information.

Programs

  • Magma
    [ p: p in PrimesUpTo(3000) | p mod 408 in {17, 23, 41, 65, 71, 95, 113, 143, 167, 209, 215, 233, 311, 329, 335, 377, 401}]; // Vincenzo Librandi, Jul 29 2012
    
  • Mathematica
    QuadPrimes2[6, 0, 17, 10000] (* see A106856 *)
  • PARI
    list(lim)=my(v=List([17]), s=[23, 41, 65, 71, 95, 113, 143, 167, 209, 215, 233, 311, 329, 335, 377, 401]); forprime(p=23, lim, if(setsearch(s, p%408), listput(v, p))); Vec(v) \\ Charles R Greathouse IV, Feb 10 2017

Formula

The primes are congruent to {17, 23, 41, 65, 71, 95, 113, 143, 167, 209, 215, 233, 311, 329, 335, 377, 401} (mod 408).