A139847 Primes of the form 6x^2 + 6xy + 19y^2.
19, 31, 139, 199, 271, 439, 619, 691, 811, 859, 1039, 1231, 1279, 1291, 1399, 1459, 1531, 1699, 1879, 1951, 2131, 2239, 2371, 2539, 2551, 2659, 2719, 2791, 2971, 3079, 3331, 3391, 3499, 3559, 3631, 3919, 4051, 4219, 4231, 4339, 4591, 4639
Offset: 1
Links
- Vincenzo Librandi and Ray Chandler, Table of n, a(n) for n = 1..10000 [First 1000 terms from Vincenzo Librandi]
- N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
Programs
-
Magma
[ p: p in PrimesUpTo(6000) | p mod 420 in {19, 31, 139, 199, 271, 391}]; // Vincenzo Librandi, Jul 29 2012
-
Mathematica
QuadPrimes2[6, -6, 19, 10000] (* see A106856 *)
-
PARI
list(lim)=my(v=List(), s=[19, 31, 139, 199, 271, 391]); forprime(p=19, lim, if(setsearch(s, p%420), listput(v, p))); Vec(v) \\ Charles R Greathouse IV, Feb 10 2017
Formula
The primes are congruent to {19, 31, 139, 199, 271, 391} (mod 420).
Comments