cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A139850 Primes of the form 11x^2 + 8xy + 11y^2.

Original entry on oeis.org

11, 71, 179, 191, 239, 359, 431, 491, 599, 659, 911, 1019, 1031, 1439, 1451, 1499, 1619, 1871, 2039, 2111, 2339, 2459, 2531, 2591, 2699, 2711, 2879, 3011, 3119, 3299, 3371, 3539, 3719, 3851, 4019, 4139, 4211, 4271, 4391, 4691, 4799, 5051
Offset: 1

Views

Author

T. D. Noe, May 02 2008

Keywords

Comments

Discriminant = -420. See A139827 for more information.
Also primes of the forms 11x^2 + 6xy + 39y^2 and 11x^2 + 10xy + 50y^2. See A140633. - T. D. Noe, May 19 2008

Programs

  • Magma
    [ p: p in PrimesUpTo(6000) | p mod 420 in {11, 71, 179, 191, 239, 359}]; // Vincenzo Librandi, Jul 29 2012
    
  • Mathematica
    Union[QuadPrimes2[11, 8, 11, 10000], QuadPrimes2[11, -8, 11, 10000]] (* see A106856 *)
  • PARI
    list(lim)=my(v=List(), s=[11, 71, 179, 191, 239, 359]); forprime(p=11, lim, if(setsearch(s, p%420), listput(v, p))); Vec(v) \\ Charles R Greathouse IV, Feb 10 2017

Formula

The primes are congruent to {11, 71, 179, 191, 239, 359} (mod 420).