cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A139874 Primes of the form 3x^2 + 56y^2.

Original entry on oeis.org

3, 59, 83, 131, 227, 251, 419, 467, 563, 587, 971, 1091, 1259, 1307, 1427, 1571, 1811, 1907, 1931, 1979, 2099, 2243, 2267, 2411, 2579, 2819, 2939, 3083, 3251, 3323, 3491, 3659, 3779, 3923, 3947, 4091, 4259, 4283, 4451, 4787, 4931, 5003
Offset: 1

Views

Author

T. D. Noe, May 02 2008

Keywords

Comments

Discriminant = -672. See A139827 for more information.
Except for 3, also primes of the form 20x^2 + 12xy + 27y^2. See A140633. - T. D. Noe, May 19 2008

Programs

  • Magma
    [3] cat [ p: p in PrimesUpTo(6000) | p mod 168 in {59, 83, 131}]; // Vincenzo Librandi, Jul 30 2012
    
  • Mathematica
    QuadPrimes2[3, 0, 56, 10000] (* see A106856 *)
  • PARI
    list(lim)=my(v=List(),w,t); for(x=1, sqrtint(lim\3), w=3*x^2; for(y=0, sqrtint((lim-w)\56), if(isprime(t=w+56*y^2), listput(v,t)))); Set(v) \\ Charles R Greathouse IV, Mar 07 2017

Formula

Except for 3, the primes are congruent to {59, 83, 131} (mod 168).