A139878 Primes of the form 8x^2+8xy+23y^2.
23, 71, 191, 239, 263, 359, 431, 599, 743, 863, 911, 1031, 1103, 1367, 1439, 1583, 1607, 1871, 2039, 2087, 2111, 2207, 2423, 2447, 2543, 2591, 2711, 2879, 2927, 3119, 3623, 3719, 3767, 4127, 4271, 4391, 4463, 4799, 4943, 4967, 5231, 5279
Offset: 1
Links
- Vincenzo Librandi and Ray Chandler, Table of n, a(n) for n = 1..10000 [First 1000 terms from Vincenzo Librandi]
- N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
Programs
-
Magma
[ p: p in PrimesUpTo(6000) | p mod 168 in {23, 71, 95}]; // Vincenzo Librandi, Jul 30 2012
-
Mathematica
QuadPrimes2[8, -8, 23, 10000] (* see A106856 *)
Formula
The primes are congruent to {23, 71, 95} (mod 168).
Comments