A139992 Primes of the form 20x^2+20xy+47y^2.
47, 167, 383, 503, 647, 887, 983, 1223, 1487, 1823, 1847, 2063, 2663, 2687, 2903, 3023, 3167, 3407, 3527, 3863, 4007, 4583, 4703, 5087, 5927, 6047, 6263, 6863, 7103, 7607, 7703, 7727, 8447, 8543, 8783, 9623, 9743, 9887, 10223, 10247, 10463
Offset: 1
Links
- Vincenzo Librandi and Ray Chandler, Table of n, a(n) for n = 1..10000 [First 1000 terms from Vincenzo Librandi]
- N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
Programs
-
Magma
[p: p in PrimesUpTo(12000) | p mod 840 in [47, 143, 167, 383, 503, 647]]; // Vincenzo Librandi, Aug 03 2012
-
Mathematica
QuadPrimes2[20, -20, 47, 10000] (* see A106856 *)
Formula
The primes are congruent to {47, 143, 167, 383, 503, 647} (mod 840).
Comments