A140003 Primes of the form 8x^2+8xy+167y^2.
167, 263, 503, 743, 887, 1223, 1487, 1583, 1823, 1847, 2063, 2087, 2207, 2543, 2903, 3167, 3407, 3527, 3863, 4127, 4463, 4583, 4703, 4967, 5783, 5807, 5903, 6047, 6287, 6863, 7103, 7127, 7487, 7607, 7823, 8087, 8423, 8447, 8543, 8663
Offset: 1
Links
- Vincenzo Librandi and Ray Chandler, Table of n, a(n) for n = 1..10000 [First 1000 terms from Vincenzo Librandi]
- N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
Programs
-
Magma
[p: p in PrimesUpTo(12000) | p mod 1320 in [167, 263, 503, 527, 623, 743, 767, 887, 1007, 1223]]; // Vincenzo Librandi, Aug 04 2012
-
Mathematica
QuadPrimes2[8, -8, 167, 10000] (* see A106856 *)
Formula
The primes are congruent to {167, 263, 503, 527, 623, 743, 767, 887, 1007, 1223} (mod 1320).
Comments