A140071 Triangle read by rows: iterates of X * [1,0,0,0,...]; where X = an infinite lower bidiagonal matrix with [3,1,3,1,3,1...] in the main diagonal and [1,1,1,...] in the subdiagonal.
1, 3, 1, 9, 4, 1, 27, 13, 7, 1, 81, 40, 34, 8, 1, 243, 121, 142, 42, 11, 1, 729, 364, 547, 184, 75, 12, 1, 2187, 1093, 2005, 731, 409, 87, 15, 1, 6561, 3280, 7108, 2736, 1958, 496, 132, 16, 1, 19683, 9841, 24604, 9844, 8610, 2454, 892, 148, 19, 1
Offset: 1
Examples
First few rows of the triangle are: 1; 3, 1; 9, 4, 1; 27, 13, 7, 1; 81, 40, 34, 8, 1; 243, 121, 142, 42, 11, 1; 729, 364, 547, 184, 75, 12, 1; 2187, 1093, 2005, 731, 409, 87, 15, 1; 6561, 3280, 7108, 2736, 1958, 496, 132, 16, 1; ...
Formula
From Peter Bala, Jan 17 2014: (Start)
O.g.f. (1 + (x - 1)*z)/(1 - 4*z - (x^2 - 3)*z^2) = 1 + (x + 3)*z + (x^2 + 4*x + 9)*z^2 + ....
Recurrence equation: T(n,k) = 4*T(n-1,k) - 3*T(n-2,k) + T(n-2,k-2).
Recurrence equation for row polynomials: R(n,x) = 4*R(n-1,x) + (x^2 - 3)*R(n-2,x) with R(0,x) = 1 and R(1,x) = 3 + x.
Another recurrence equation: R(n,x) = (x + 2)*R(n-1,x) + R(n-1,-x) with R(0,x) = 1. Cf. A157751. (End)
Comments