cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A140077 Numbers n such that n and n+1 have 3 distinct prime factors.

Original entry on oeis.org

230, 285, 429, 434, 455, 494, 560, 594, 609, 615, 644, 645, 650, 665, 740, 741, 759, 804, 805, 819, 825, 854, 860, 884, 902, 935, 945, 969, 986, 987, 1001, 1014, 1022, 1034, 1035, 1044, 1064, 1065, 1070, 1085, 1104, 1105, 1130, 1196, 1209, 1220, 1221
Offset: 1

Views

Author

Artur Jasinski, May 07 2008

Keywords

Comments

Goldston, Graham, Pintz, & Yildirim prove that this sequence is infinite. - Charles R Greathouse IV, Sep 14 2015
See A321503 for numbers n such that n & n+1 have at least 3 prime divisors, disjoint union of this and A321493, the terms of A321503 which are not in this sequence. A321493 has A140078 as a subsequence, which in turn is subsequence of A321504, and so on. Since n and n+1 can't share a prime factor, we have a(1) > sqrt(p(3+3)#) > A000196(A002110(3+3)). Note that A000196(A002110(3+4)) = A321493(1) exactly! - M. F. Hasler, Nov 13 2018

Crossrefs

Programs

  • Mathematica
    a = {}; Do[If[Length[FactorInteger[n]] == 3 && Length[FactorInteger[n + 1]] == 3, AppendTo[a, n]], {n, 1, 100000}]; a (*Artur Jasinski*)
    SequencePosition[PrimeNu[Range[1250]],{3,3}][[All,1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Feb 27 2017 *)
  • PARI
    is(n)=omega(n)==3&&omega(n+1)==3 \\ Charles R Greathouse IV, Sep 14 2015

Formula

{k: k in A033992 and k+1 in A033992}. - R. J. Mathar, Jul 19 2023