cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A087949 G.f. satisfies A(x) = 1 + x*A(x*A(x)).

Original entry on oeis.org

1, 1, 1, 2, 5, 16, 59, 246, 1131, 5655, 30428, 174835, 1066334, 6870542, 46581883, 331237074, 2463361903, 19112314727, 154364077009, 1295325828045, 11273167827343, 101589943242179, 946577526626181, 9107029927925714, 90359115887726302, 923509462029444933
Offset: 0

Views

Author

Paul D. Hanna, Sep 16 2003

Keywords

Examples

			G.f.: A(x) = 1 + x + x^2 + 2*x^3 + 5*x^4 + 16*x^5 +...
A(xA(x)) = 1 + x + 2*x^2 + 5*x^3 + 16*x^4 + 59*x^5 +...
Logarithmic series:
log(A(x)) = x/A(x) + [d/dx x^3*A(x)^2]*A(x)^(-4)/2! + [d^2/dx^2 x^5*A(x)^3]*A(x)^(-6)/3! + [d^3/dx^3 x^7*A(x)^4]*A(x)^(-8)/4! +...
Let G(x) = x*A(x) then
x = G(x*[1 - G(x) + 2*G(x)^2 - 5*G(x)^3 + 14*G(x)^4 - 42*G(x)^5 +-...])
where the unsigned coefficients are the Catalan numbers (A000108).
		

Crossrefs

Programs

  • Maple
    A:= proc(n) option remember; `if`(n=0, 1, (T->
          unapply(convert(series(1+x*T(x*T(x)), x, n+1)
          , polynom), x))(A(n-1)))
        end:
    a:= n-> coeff(A(n)(x), x, n):
    seq(a(n), n=0..25);  # Alois P. Heinz, May 15 2016
  • Mathematica
    a[n_] := (A=x; If[n<1, 0, For[i=1, i <= n, i++, A = InverseSeries[2*(x/(1 + Sqrt[1 + 4*A + x*O[x]^n]))]]]; SeriesCoefficient[A, {x, 0, n}]); Array[a, 26] (* Jean-François Alcover, Oct 04 2016, adapted from PARI *)
  • PARI
    {a(n)=my(A=x); if(n<1, 0, for(i=1,n,A=serreverse(2*x/(1 + sqrt(1+4*A +x*O(x^n))))); polcoeff(A, n))}
    
  • PARI
    {a(n,m=1)=if(n==0,1,if(m==0,0^n,sum(k=0,n,m*binomial(n-k+m,k)/(n-k+m)*a(n-k,k))))} \\ Paul D. Hanna, Jul 09 2009
    
  • PARI
    /* n-th Derivative: */
    {Dx(n,F)=my(D=F);for(i=1,n,D=deriv(D));D}
    /* G.f. */
    {a(n)=my(A=1+x+x*O(x^n));for(i=1,n,A=exp(sum(m=0,n,Dx(m,x^(2*m+1)*A^(m+1))*A^(-2*m-2)/(m+1)!)+x*O(x^n)));polcoeff(A,n)} \\ Paul D. Hanna, Dec 18 2010

Formula

Let G(x) = x*A(x), then the following statements hold:
* G(x) = x*(1 + sqrt(1 + 4*G(G(x))))/2;
* G(x) = Series_Reversion[2*x/(1 + sqrt(1 + 4*G(x)))].
- Paul D. Hanna, May 15 2008
From Paul D. Hanna, Apr 16 2007: (Start)
G.f. A(x) is the unique solution to variable A in the infinite system of simultaneous equations:
A = 1 + xB;
B = 1 + xAC;
C = 1 + xABD;
D = 1 + xABCE;
E = 1 + xABCDF ; ... (End)
From Paul D. Hanna, Jul 09 2009: (Start)
Let A(x)^m = Sum_{n>=0} a(n,m)*x^n, then
a(n,m) = Sum_{k=0..n} m*C(n-k+m,k)/(n-k+m) * a(n-k,k) with a(0,m)=1.
(End)
G.f. satisfies: A(x) = exp( Sum_{n>=0} [d^n/dx^n x^(2n+1)*A(x)^(n+1)] *A(x)^(-2n-2)/(n+1)! ). - Paul D. Hanna, Dec 18 2010

Extensions

Edited by N. J. A. Sloane, May 19 2008
Showing 1-1 of 1 results.