A140099 A Beatty sequence: a(n) = [n*(1+t)], where t = tribonacci constant (A058265); complement of A140098.
2, 5, 8, 11, 14, 17, 19, 22, 25, 28, 31, 34, 36, 39, 42, 45, 48, 51, 53, 56, 59, 62, 65, 68, 70, 73, 76, 79, 82, 85, 88, 90, 93, 96, 99, 102, 105, 107, 110, 113, 116, 119, 122, 124, 127, 130, 133, 136, 139, 141, 144, 147, 150, 153, 156, 159, 161, 164, 167, 170, 173
Offset: 1
Keywords
Examples
Tribonacci constant: t = 1.839286755214161132551852564653286600...
Links
- Harvey P. Dale and N. J. A. Sloane, Table of n, a(n) for n = 1..20000, Aug 29 2016 (First 1000 terms from Harvey P. Dale)
- N. J. A. Sloane, Table of n, a(n) for n = 1..100000
Crossrefs
Programs
-
Mathematica
With[{tc=1/3 (1+Surd[19-3Sqrt[33],3])+1/3 Surd[19+3Sqrt[33],3]},Array[ Floor[ (1+tc)*#]&,70]] (* Harvey P. Dale, Dec 05 2013 *)
-
PARI
{a(n)=local(t=(1+(19+3*sqrt(33))^(1/3)+(19-3*sqrt(33))^(1/3))/3);floor(n*(1+t))}
Formula
For n >= 1, a(n) = A158919(n)+n. - N. J. A. Sloane, Sep 04 2016
Comments