A140102 Term-by-term differences of A140101 and A140100; also, equals the complement of A140103, which is the term-by-term sums of A140101 and A140100, where A140101 is the complement of A140100.
0, 1, 2, 4, 5, 6, 7, 9, 10, 11, 13, 14, 15, 16, 18, 19, 21, 22, 23, 24, 26, 27, 28, 30, 31, 32, 33, 35, 36, 37, 38, 40, 41, 42, 44, 45, 46, 47, 49, 50, 52, 53, 54, 55, 57, 58, 59, 61, 62, 63, 64, 66, 67, 68, 70, 71, 72, 73, 75, 76, 78, 79, 80, 81, 83, 84, 85, 87, 88, 89, 90, 92, 93
Offset: 0
Keywords
Links
- N. J. A. Sloane, Table of n, a(n) for n = 0..50000, Sep 13 2016 (First 1001 terms from Reinhard Zumkeller)
- F. Michel Dekking, Jeffrey Shallit, and N. J. A. Sloane, Queens in exile: non-attacking queens on infinite chess boards, Electronic J. Combin., 27:1 (2020), #P1.52.
- N. J. A. Sloane, Maple program for A140100, A140101, A140102, A140103
Crossrefs
Programs
-
Maple
See link.
-
Mathematica
nmax = 100; y[0] = 0; x[1] = 1; y[1] = 2; x[n_] := x[n] = For[yn = y[n-1] + 1, True, yn++, For[xn = x[n-1] + 1, xn < yn, xn++, xx = Array[x, n-1]; yy = Array[y, n-1]; If[FreeQ[xx, xn | yn] && FreeQ[yy, xn | yn] && FreeQ[yy - xx, yn - xn] && FreeQ[yy + xx, yn - xn], y[n] = yn; Return[xn]]]]; Do[x[n], {n, 1, nmax}]; Join[{0}, yy - xx] (* Jean-François Alcover, Aug 01 2018 *)
-
PARI
{X=[1];Y=[2];D=[1];S=[3];print1(Y[1]-X[1]","); for(n=1,100,for(j=2,2*n,if(setsearch(Set(concat(X,Y)),j)==0,Xt=concat(X,j); for(k=j+1,3*n,if(setsearch(Set(concat(Xt,Y)),k)==0, if(setsearch(Set(concat(D,S)),k-j)==0,if(setsearch(Set(concat(D,S)),k+j)==0, X=Xt;Y=concat(Y,k);D=concat(D,k-j);S=concat(S,k+j); print1(Y[ #X]-X[ #Y]",");break);break))))))}
Formula
Extensions
Terms computed by Reinhard Zumkeller.
Offset and initial term changed by N. J. A. Sloane, Oct 10 2016