cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A140126 Partial sums of A001912.

Original entry on oeis.org

1, 3, 6, 11, 18, 26, 36, 48, 61, 79, 99, 126, 154, 187, 224, 266, 311, 358, 413, 471, 531, 593, 656, 721, 788, 861, 936, 1014, 1094, 1179, 1267, 1357, 1449, 1551, 1654, 1759, 1871, 1986, 2104, 2224, 2349, 2477, 2607, 2739, 2874, 3014, 3156, 3306, 3459, 3616
Offset: 1

Views

Author

Jonathan Vos Post, Jun 04 2008

Keywords

Examples

			a(17) = 1 + 2 + 3 + 5 + 7 + 8 + 10 + 12 + 13 + 18 + 20 + 27 + 28 + 33 + 37 + 42 + 45 = 311 which is itself a prime. The primes in this sequence begin: 3, 11, 61, 79, 311, 593.
		

Crossrefs

Programs

  • Maple
    A001912 := proc(n) option remember ; local a ; if n <= 3 then RETURN(n); else for a from A001912(n-1)+1 do if isprime(4*a^2+1) then RETURN(a) ; fi ; od: fi ; end: A140126 := proc(n) local i ; add( A001912(i),i=1..n) ; end: seq(A140126(n),n=1..80) ; # R. J. Mathar, Jun 12 2008
  • Mathematica
    Accumulate[Select[Range[200],PrimeQ[4#^2+1]&]] (* Harvey P. Dale, Jan 29 2017 *)

Formula

a(n) = SUM[i=1..n] A001912(i) = SUM[j=1..n] {Numbers i_j such that 4*(i_j)^2 + 1 is prime}.

Extensions

More terms from R. J. Mathar, Jun 12 2008