cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A140144 a(1)=1, a(n)=a(n-1)+n^1 if n odd, a(n)=a(n-1)+ n^0 if n is even.

Original entry on oeis.org

1, 2, 5, 6, 11, 12, 19, 20, 29, 30, 41, 42, 55, 56, 71, 72, 89, 90, 109, 110, 131, 132, 155, 156, 181, 182, 209, 210, 239, 240, 271, 272, 305, 306, 341, 342, 379, 380, 419, 420, 461, 462, 505, 506, 551, 552, 599, 600, 649, 650, 701, 702, 755, 756, 811, 812, 869
Offset: 1

Views

Author

Artur Jasinski, May 12 2008

Keywords

Comments

Equals triangle A177990 * [1,2,3,...]. - Gary W. Adamson, May 16 2010

Crossrefs

Cf. A177990. - Gary W. Adamson, May 16 2010
Cf. A002378 (even bisection), A028387 (odd bisection).

Programs

  • Mathematica
    a = {}; r = 1; s = 0; Do[k = 0; Do[k = k + (Sin[Pi m/2]^2) m^r + (Cos[Pi m/2]^2) m^s, {m, 1, n}]; AppendTo[a, k], {n, 1, 100}]; a

Formula

From R. J. Mathar, Feb 22 2009: (Start)
a(n) = a(n-1)+2*a(n-2)-2*a(n-3)-a(n-4)+a(n-5).
G.f.: x*(-1-x-x^2+x^3)/ ((1+x)^2*(x-1)^3). (End)
a(n) = Sum_{k=1..n} k^(k mod 2). - Wesley Ivan Hurt, Nov 20 2021