cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A140164 Binomial transform of [1, 1, 1, 1, -1, -1, 5, -11, 19, -29, 41, ...].

Original entry on oeis.org

1, 2, 4, 8, 14, 20, 26, 32, 38, 44, 50, 56, 62, 68, 74, 80, 86, 92, 98, 104, 110, 116, 122, 128, 134, 140, 146, 152, 158, 164, 170, 176, 182, 188, 194, 200, 206, 212, 218, 224, 230, 236, 242, 248, 254, 260, 266, 272, 278, 284, 290, 296, 302, 308, 314, 320, 326
Offset: 1

Views

Author

Gary W. Adamson, May 10 2008

Keywords

Comments

Sum of antidiagonal terms of the following arithmetic array:
1, 1, 1, 1, 1, 1, 1, 1, ...
1, 2, 3, 4, 5, 6, 7, 8, ...
1, 3, 5, 7, 9, 11, 13, 15, ...
1, 4, 7, 10, 13, 16, 19, 22, ...
1, 5, 9, 13, 17, 21, 25, 29, ...
1, 6, 11, 16, 21, 26, 31, 36, ...
1, 7, 13, 19, 25, 31, 37, 43, ...
1, 8, 15, 22, 29, 36, 43, 50, ...
...
For [1, 1, 1, 1, -1, -1, 5, -11, 19, -29, 41, -55, ...], see A??????.

Examples

			a(4) = 8 = (1, 3, 3, 1) dot (1, 1, 1, 1) = (1 + 3 + 3 + 1).
a(5) = 14 = (4 + 5 + 4 + 1).
		

Crossrefs

Cf. A028387.

Programs

  • GAP
    Concatenation([1,2,4], List([4..60], n-> 6*n-16)); # G. C. Greubel, May 12 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 60); Coefficients(R!( x*(1+x^2+2*x^3+2*x^4)/(1-x)^2 )); // G. C. Greubel, May 12 2019
    
  • Maple
    From R. J. Mathar, May 03 2010: (Start)
    A028387 := proc(n) option remember; if n <= 2 then op(n+1,[1,5,11]) ; else 3*procname(n-1)-3*procname(n-2)+procname(n-3) ; end if; end proc:
    read("transforms") ; L := [1,1,1,1,-1, seq((-1)^(n+1)*A028387(n), n=0..60)]; BINOMIAL(L) ; (End)
  • Mathematica
    Table[If[n < 4, 2^(n - 1), 6 n - 16], {n, 60}] (* or *)
    Rest@CoefficientList[Series[x*(1+x^2+2x^3+2x^4)/(1-x)^2, {x, 0, 60}], x] (* Michael De Vlieger, Jul 18 2016 *)
  • PARI
    a(n)=if(n<4,2^(n-1),6*n-16) \\ Charles R Greathouse IV, Jul 17 2016
    
  • Sage
    (x*(1+x^2+2*x^3+2*x^4)/(1-x)^2).series(x, 60).coefficients(x, sparse=False) # G. C. Greubel, May 12 2019
    

Formula

Binomial transform of [1, 1, 1, 1, -1, -1, 5, -11, 19, -29, 41, -55,...]; where A028387 = (1, 5, 11, 19, 29, 41,...), such that A028387(n) = (2*T(n) - 1).
From R. J. Mathar, May 03 2010: (Start)
G.f.: x*(1+x^2+2*x^3+2*x^4)/(1-x)^2. [G.f. amended by Georg Fischer, May 12 2019]
a(n) = A016933(n-2), n>2. (End)
a(n) = 2*(3n-5), n >= 3, if offset is 0 instead of 1. - Daniel Forgues, Jul 17 2016

Extensions

More terms from R. J. Mathar, May 03 2010