A140296 Number of isomorphism classes of smooth toric Fano n-folds (or, equivalently, regular Fano n-topes).
1, 5, 18, 124, 866, 7622, 72256, 749892, 8229721
Offset: 1
Links
- Victor V. Batyrev, Toric Fano threefolds, Izv. Akad. Nauk SSSR Ser. Mat. 45 (1981), no. 4, 704-717, 927.
- Yang-Hui He, Rak-Kyeong Seong, and Shing-Tung Yau, Calabi-Yau Volumes and Reflexive Polytopes, arXiv:1704.03462 [hep-th], 2017.
- Maximillian Kreuzer and Benjamin Nill, Classification of toric fano 5-folds, arXiv:math/0702890 [math.AG], 2007.
- Benjamin Lorenz and Benjamin Nill, Smooth Gorenstein polytopes
- Mikkel Oebro, An algorithm for the classification of smooth Fano polytopes, arXiv:0704.0049 [math.CO], 2007.
- Mikkel Oebro, Text-format and PALP-friendly files containing the classifications up to n=7
- Andreas Paffenholz, Smooth Reflexive Lattice Polytopes
Extensions
a(9) from F. Chapoton, Mar 13 2014