A140303 Triangle T(n,k) = 3^(n-k) read by rows.
1, 3, 1, 9, 3, 1, 27, 9, 3, 1, 81, 27, 9, 3, 1, 243, 81, 27, 9, 3, 1, 729, 243, 81, 27, 9, 3, 1, 2187, 729, 243, 81, 27, 9, 3, 1, 6561, 2187, 729, 243, 81, 27, 9, 3, 1, 19683, 6561, 2187, 729, 243, 81, 27, 9, 3, 1, 59049, 19683, 6561, 2187, 729, 243, 81, 27, 9, 3, 1
Offset: 0
Examples
1; 3, 1; 9, 3, 1; 27, 9, 3, 1; 81, 27, 9, 3, 1; 243, 81, 27, 9, 3, 1; 729, 243, 81, 27, 9, 3, 1; 2187, 729, 243, 81, 27, 9, 3, 1; 6561, 2187, 729, 243, 81, 27, 9, 3, 1; 19683, 6561, 2187, 729, 243, 81, 27, 9, 3, 1; 59049, 19683, 6561, 2187, 729, 243, 81, 27, 9, 3, 1;
References
- Advanced Number Theory, Harvey Cohn, Dover Books, 1963, Page 232
Crossrefs
Cf. A130321.
Programs
-
Mathematica
Clear[p, a] a = 3; p[x, 0] = 1; p[x_, n_] := p[x, n] = Sum[a^i*x^(n - i), {i, 0, n}]; Table[p[x, n], {n, 0, 10}]; a0 = Table[CoefficientList[p[x, n], x], {n, 0, 10}]; Flatten[a0] Table[Apply[Plus, CoefficientList[p[x, n], x]], {n, 0, 10}] Table[3^(n-k),{n,15},{k,n}]//Flatten (* Harvey P. Dale, Nov 14 2021 *)
Formula
T(n,k) = A000244(n-k) . - R. J. Mathar, Sep 12 2013
Comments