A140315 Numbers k such that k!/k#-1 and k!/k#+1 are a twin prime pair.
4, 5, 8, 34, 280, 281
Offset: 1
Examples
8!/8#-1 = 191, 8!/8#-1 = 193. 191 and 193 form a twin prime pair.
Links
- G. L. Honaker, Jr. and Chris Caldwell, Prime Curios! 281.
Programs
-
Mathematica
Primorial[n_] := Product[Prime[i], {i, 1, PrimePi[n]}]; Select[Range[ 1000], (p = (#! / Primorial[#]); PrimeQ[p + 1] && PrimeQ[p - 1]) &] (* Robert Price, Oct 11 2019 *)
-
PARI
g(n) = for(x=1,n,y=x!/primorial(x)-1;z=nextprime(y+1); if(ispseudoprime(y)&&z-y==2,print1(x", "))) primorial(n) = { local(p1,x); if(n==0||n==1,return(1)); p1=1; forprime(x=2,n,p1*=x); return(p1) }
Formula
n# is the primorial function A034386(n).
Extensions
Offset corrected by Amiram Eldar, Jul 18 2025
Comments