A140294 Numbers k such that k!/k# + 1 is prime, where k# is the primorial function (A034386).
0, 1, 2, 3, 4, 5, 8, 14, 20, 26, 34, 56, 104, 153, 182, 194, 217, 230, 280, 281, 462, 463, 529, 1445, 2515, 3692, 6187, 6851, 13917, 17258, 48934, 83515, 96835
Offset: 1
Keywords
Examples
8!/8# + 1 = 40320/210 + 1 = 193, a prime.
Links
- Chris Caldwell, Compositorial
Programs
-
Maple
A140294 := proc(n) local L, p, s, i; L := 1; for p in select(isprime, [$2..iquo(n,2)]) do s := add(i,i=convert(n,base,p)); L := L*p^((n-s)/(p-1)-1) od; `if`(isprime(L+1), n, NULL) end: seq(A140294(i), i=0..104); # Peter Luschny, Mar 27 2013
-
Mathematica
Primorial[p_] := Times @@ Prime[Range[PrimePi[p]]]; Select[Range[0,194], PrimeQ[#!/Primorial[#] + 1] &] (* T. D. Noe, Mar 27 2013 *)
-
PARI
is(n)=ispseudoprime(n!/prod(i=1,primepi(n),prime(i))+1) \\ Charles R Greathouse IV, Mar 27 2013
-
PFGW
ABC2 $a!/$a#+1 a: from 1 to 3000
Extensions
a(17)-a(25) from Charles R Greathouse IV, Mar 27 2013
a(26)-a(27) from Giovanni Resta, Mar 28 2013
a(28) from Charles R Greathouse IV, Mar 28 2013
a(29) from Giovanni Resta, Apr 02 2013
a(30) from Roger Karpin, Nov 29 2014
a(31) from Roger Karpin, Jun 08 2015
a(32)-a(33) communicated by Jeppe Stig Nielsen, Jul 13 2025
Comments