A140324 A new way to compute polynomial triangles from matrices of a Folium Implicit type: M={{0, -w[1], -w[2]}, {w[1], 0, -w[1]}, {w[2], w[1], 0}} that gives even only monomials as w[1]=x, others as one.
1, 0, 0, 1, 1, -2, -1, 2, 1, 1, -8, 22, -22, 1, 6, 1, 0, 0, 9, -54, 117, -102, 18, 12, 1, 1, -6, 3, 48, -101, -32, 291, -294, 70, 20, 1
Offset: 1
Examples
{1}, {}, {0, 0, 1}, {}, {1, -2, -1, 2, 1}, {}, {1, -8, 22, -22, 1, 6, 1}, {}, {0, 0, 9, -54, 117, -102, 18, 12, 1}, {}, {1, -6, 3, 48, -101, -32, 291, -294, 70, 20, 1}
Programs
-
Mathematica
Clear[M, a, d, x, w] M[d_] := Table[Sign[n - m]*w[Abs[n - m]], {n, 1, d}, {m, 1, d}]; a = Table[M[d], {d, 1, 10}]; Table[If[n == 1, w[n] = x, w[n] = 1], {n, 0, 10}]; Table[Det[a[[d]]], {d, 1, 10}]; a0 = Join[{{1}}, Table[CoefficientList[Det[a[[d]]], x], {d, 1, 10}]]; Flatten[a0] Table[Apply[Plus, CoefficientList[Det[a[[d]]], x]], {d, 1, 10}]
Formula
Compute matrices as: T(n,m)=Sign[n - m]*w[Abs[n - m]]; Change to monomial as:If[n==1,w[n]=x,w[n]=1]; Take determinant of matrices M(d); out_n,m=Coefficients(Det(M(d)))).
Comments