cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A140394 Numbers n, satisfying A055231(n+1) - A055231(n) = 1, and with n and n+1 not squarefree.

Original entry on oeis.org

49, 1681, 18490, 23762, 39325, 57121, 182182, 453962, 656914, 843637, 1431125, 1608574, 1609674, 1940449, 2328482, 2948406, 3203050, 3721549, 5606230, 6352825, 8984002, 10000165, 13502254, 19326874, 19740249, 21006589, 26623750, 35558770, 38067925, 46297822
Offset: 1

Views

Author

Michel Lagneau, Dec 19 2011

Keywords

Comments

There exists an infinite number of numbers that are divisible by a square and satisfy A055231(n+1) - A055231(n) = 1 because the Fermat-Pell equation 2x^2 - y^2 = 1 admits an infinite number of solutions.

Examples

			49 is in the sequence because A055231(50) - A055231(49) = A055231(2*5^2) - A055231(7^2) = 2 - 1 = 1;
18490 is in the sequence because A055231(18491) - A055231(18490) = A055231(11*41^2) -A055231(2*5*43^2)  = 11 - 10 = 1.
		

References

  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 49, p. 18, Ellipses, Paris 2008.

Crossrefs

Programs

  • Maple
    isA013929 := proc(n)
        n>3 and not numtheory[issqrfree](n) ;
    end proc:
    isA140394 := proc(n)
        isA013929(n) and isA013929(n+1) and (A055231(n+1) -A055231(n) = 1)  ;
    end proc:
    for n from 1 do
        if isA140394(n) then
            print(n);
        end if;
    end do: # R. J. Mathar, Dec 23 2011
  • Mathematica
    rad[n_] := Times @@ First /@ FactorInteger[n]; pow[n_] := Denominator[n / rad[n]^2]; aQ[n_] := !SquareFreeQ[n] && !SquareFreeQ[n + 1] && pow[n + 1] - pow[n] == 1; Select[Range[10^6], aQ] (* Amiram Eldar, Oct 01 2019 *)

Extensions

a(24)-a(30) from Amiram Eldar, Oct 01 2019