A140394 Numbers n, satisfying A055231(n+1) - A055231(n) = 1, and with n and n+1 not squarefree.
49, 1681, 18490, 23762, 39325, 57121, 182182, 453962, 656914, 843637, 1431125, 1608574, 1609674, 1940449, 2328482, 2948406, 3203050, 3721549, 5606230, 6352825, 8984002, 10000165, 13502254, 19326874, 19740249, 21006589, 26623750, 35558770, 38067925, 46297822
Offset: 1
Keywords
Examples
49 is in the sequence because A055231(50) - A055231(49) = A055231(2*5^2) - A055231(7^2) = 2 - 1 = 1; 18490 is in the sequence because A055231(18491) - A055231(18490) = A055231(11*41^2) -A055231(2*5*43^2) = 11 - 10 = 1.
References
- J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 49, p. 18, Ellipses, Paris 2008.
Programs
-
Maple
isA013929 := proc(n) n>3 and not numtheory[issqrfree](n) ; end proc: isA140394 := proc(n) isA013929(n) and isA013929(n+1) and (A055231(n+1) -A055231(n) = 1) ; end proc: for n from 1 do if isA140394(n) then print(n); end if; end do: # R. J. Mathar, Dec 23 2011
-
Mathematica
rad[n_] := Times @@ First /@ FactorInteger[n]; pow[n_] := Denominator[n / rad[n]^2]; aQ[n_] := !SquareFreeQ[n] && !SquareFreeQ[n + 1] && pow[n + 1] - pow[n] == 1; Select[Range[10^6], aQ] (* Amiram Eldar, Oct 01 2019 *)
Extensions
a(24)-a(30) from Amiram Eldar, Oct 01 2019
Comments