cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A140405 a(n) = binomial(n+6, 6)*5^n.

Original entry on oeis.org

1, 35, 700, 10500, 131250, 1443750, 14437500, 134062500, 1173046875, 9775390625, 78203125000, 604296875000, 4532226562500, 33120117187500, 236572265625000, 1656005859375000, 11385040283203125, 77016448974609375, 513442993164062500, 3377914428710937500
Offset: 0

Views

Author

Zerinvary Lajos, Jun 16 2008

Keywords

Comments

With a different offset, number of n-permutations (n>=6) of 6 objects: t, u, v, z, x, y with repetition allowed, containing exactly six (6) u's.
If n=6 then a(0)=1.
Example: a(1)=35 because we have
uuuuuut, uuuuutu, uuuutuu, uuutuuu, uutuuuu, utuuuuu, tuuuuuu,
uuuuuuv, uuuuuvu, uuuuvuu, uuuvuuu, uuvuuuu, uvuuuuu, vuuuuuu,
uuuuuuz, uuuuuzu, uuuuzuu, uuuzuuu, uuzuuuu, uzuuuuu, zuuuuuu,
uuuuuux, uuuuuxu, uuuuxuu, uuuxuuu, uuxuuuu, uxuuuuu, xuuuuuu,
uuuuuuy, uuuuuyu, uuuuyuu, uuuyuuu, uuyuuuu, uyuuuuu, yuuuuuu.

Crossrefs

Programs

  • Maple
    seq(binomial(n+6,6)*5^n,n=0..18);
  • Mathematica
    Table[Binomial[n+6,6]5^n,{n,0,20}] (* Harvey P. Dale, Dec 03 2017 *)

Formula

G.f.: 1/(1-5*x)^7. - Zerinvary Lajos, Aug 06 2008
From Amiram Eldar, Aug 29 2022: (Start)
Sum_{n>=0} 1/a(n) = 6856 - 30720*log(5/4).
Sum_{n>=0} (-1)^n/a(n) = 233280*log(6/5) - 42531. (End)