A140405 a(n) = binomial(n+6, 6)*5^n.
1, 35, 700, 10500, 131250, 1443750, 14437500, 134062500, 1173046875, 9775390625, 78203125000, 604296875000, 4532226562500, 33120117187500, 236572265625000, 1656005859375000, 11385040283203125, 77016448974609375, 513442993164062500, 3377914428710937500
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (35,-525,4375,-21875,65625,-109375,78125).
Programs
-
Maple
seq(binomial(n+6,6)*5^n,n=0..18);
-
Mathematica
Table[Binomial[n+6,6]5^n,{n,0,20}] (* Harvey P. Dale, Dec 03 2017 *)
Formula
G.f.: 1/(1-5*x)^7. - Zerinvary Lajos, Aug 06 2008
From Amiram Eldar, Aug 29 2022: (Start)
Sum_{n>=0} 1/a(n) = 6856 - 30720*log(5/4).
Sum_{n>=0} (-1)^n/a(n) = 233280*log(6/5) - 42531. (End)
Comments