A140427 Arises in relating doubly-even error-correcting codes, graphs and irreducible representations of N-extended supersymmetry.
0, 0, 0, 0, 1, 1, 2, 3, 4, 4, 4, 4, 5, 5, 6, 7, 8, 8, 8, 8, 9, 9, 10, 11, 12, 12, 12, 12, 13, 13, 14, 15, 16, 16, 16, 16, 17, 17, 18, 19, 20, 20, 20, 20, 21, 21, 22, 23, 24, 24, 24, 24, 25, 25, 26, 27, 28, 28, 28, 28, 29, 29, 30
Offset: 0
Links
- Nathaniel Johnston, Table of n, a(n) for n = 0..10000
- C. F. Doran, M. G. Faux, S. J. Gates Jr, T. Hubsch, K. M. Iga and G. D. Landweber, Relating Doubly-Even Error-Correcting Codes, Graphs and Irreducible Representations of N-Extended Supersymmetry, arXiv:0806.0051 [hep-th], 2008. See formula (13) on page 6.
Programs
-
Maple
A140427 := proc(n) local l: l:=[0, 0, 0, 0, 1, 1, 2, 3]: if(n<=7)then return l[n+1]:else return l[(n mod 8) + 1] + 4*floor(n/8): fi: end: seq(A140427(n),n=0..62); # Nathaniel Johnston, Apr 26 2011
-
Mathematica
a[n_] := Module[{L = {0, 0, 0, 0, 1, 1, 2, 3}}, If[n <= 7, L[[n + 1]], L[[Mod[n, 8] + 1]] + 4*Floor[n/8]]]; Table[a[n], {n, 0, 62}] (* Jean-François Alcover, Nov 28 2017, from Maple *)
Formula
a(n) = 0 for 0 <= n < 4, a(n) = floor(((n-4)^2)/4)+1 for n = 4, 5, 6, 7, and a(n) = a(n-8) + 4 for n>7.
G.f.: x^4*(x^4+x^3+x^2+1) / ((x-1)^2*(x+1)*(x^2+1)*(x^4+1)). - Colin Barker, May 04 2013
Comments