A140494 Numbers that cannot be part of the trajectory of any number under repeated application of the map: n -> n + third-smallest number that does not divide n, unless they are the first term of the trajectory.
1, 2, 3, 4, 6, 12, 18, 24, 28, 30, 36, 37, 40, 42, 46, 48, 49, 52, 54, 55, 60, 64, 66, 72, 78, 80, 84, 88, 90, 96, 97, 100, 102, 106, 108, 112, 114, 115, 120, 124, 126, 132, 133, 138, 144, 150, 156, 157, 160, 162, 166, 168, 172, 174, 175, 180, 184, 186, 192, 198, 200
Offset: 1
Keywords
Crossrefs
Programs
-
PARI
third(n) = {my(nb = 0, k = 1); while (nb != 3, if (n % k, nb++); if (nb != 3, k++);); k;} f(n) = n + third(n); canbe(n) = {for (k=1, n, if (k + third(k) == n, return (1));); return (0);} cannotbe(n) = 1 - canbe(n); lista(nn) = {for (n=1, nn, if (cannotbe(n), print1(n, ", ")););} \\ Michel Marcus, Oct 04 2018
Extensions
Corrected by Michel Marcus, Oct 04 2018