cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A140620 Primes of the form 23x^2+4xy+68y^2.

Original entry on oeis.org

23, 263, 503, 647, 887, 1223, 1583, 1823, 1847, 2063, 2207, 2447, 2687, 2903, 3407, 3527, 3623, 3767, 4007, 4463, 4703, 4943, 4967, 5087, 5303, 5807, 5903, 5927, 6263, 6863, 7127, 7487, 7583, 7823, 8087, 8423, 8447, 9623, 9767, 10007, 10247
Offset: 1

Views

Author

T. D. Noe, May 19 2008

Keywords

Comments

Discriminant=-6240. Also primes of the form 23x^2+18xy+207y^2.
In base 12, the sequence is 1E, 19E, 35E, 45E, 61E, 85E, XEE, 107E, 109E, 123E, 133E, 14EE, 167E, 181E, 1E7E, 205E, 211E, 221E, 239E, 26EE, 287E, 2X3E, 2X5E, 2E3E, 309E, 343E, 34EE, 351E, 375E, 3E7E, 415E, 43EE, 447E, 463E, 481E, 4X5E, 4X7E, 569E, 579E, 595E, 5E1E, where X is 10 and E is 11. Moreover, the discriminant is -3740. - Walter Kehowski, Jun 01 2008

Crossrefs

Cf. A140633.

Programs

  • Mathematica
    Union[QuadPrimes2[23, 4, 68, 10000], QuadPrimes2[23, -4, 68, 10000]] (* see A106856 *)