A140642 Triangle of sorted absolute values of Jacobsthal successive differences.
1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 16, 20, 21, 22, 24, 32, 40, 42, 43, 44, 48, 64, 80, 84, 85, 86, 88, 96, 128, 160, 168, 170, 171, 172, 176, 192, 256, 320, 336, 340, 341, 342, 344, 352, 384, 512, 640, 672, 680, 682, 683, 684, 688, 704, 768, 1024, 1280, 1344, 1360
Offset: 0
Examples
The triangle starts 1; 2, 3; 4, 5, 6; 8, 10, 11, 12; 16, 20, 21, 22, 24; The Jacobsthal sequence and its differences in successive rows start: 0, 1, 1, 3, 5, 11, 21, 43, 85, ... 1, 0, 2, 2, 6, 10, 22, 42, 86, ... -1, 2, 0, 4, 4, 12, 20, 44, 84, ... 3, -2, 4, 0, 8, 8, 24, 40, 88, ... -5, 6, -4, 8, 0, 16, 16, 48, 80, ... 11, -10, 12, -8, 16, 0, 32, 32, 96, ... -21, 22, -20, 24, -16, 32, 0, 64, 64, ... 43, -42, 44, -40, 48, -32, 64, 0, 128, ... The values +-7, +-9, +-13, for example, are missing there, so 7, 9 and 13 are not in the triangle.
Programs
-
Mathematica
maxTerm = 384; FixedPoint[(nMax++; Print["nMax = ", nMax]; jj = Table[(2^n - (-1)^n)/3, {n, 0, nMax}]; Table[Differences[jj, n], {n, 0, nMax}] // Flatten // Abs // Union // Select[#, 0 < # <= maxTerm &] &) &, nMax = 5 ] (* Jean-François Alcover, Dec 16 2014 *)
Formula
Row sums: A113861(n+2).
Extensions
Edited by R. J. Mathar, Dec 05 2008
a(45)-a(58) from Stefano Spezia, Mar 12 2024
Comments