A140710 Number of maximal initial consecutive columns ending at the same level, summed over all deco polyominoes of height n.
1, 3, 10, 38, 172, 944, 6208, 47696, 417952, 4101824, 44491648, 528068096, 6804155392, 94559581184, 1409615239168, 22434345998336, 379633330204672, 6805952938041344, 128854632579186688, 2568966172926181376
Offset: 1
Keywords
Examples
a(3)=10 because the 6 deco polyominoes of height 3 have columns ending at levels 3, 22, 12, 111, 22, 122, respectively and 1+2+1+3+2+1=10.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..440
- E. Barcucci, A. Del Lungo and R. Pinzani, "Deco" polyominoes, permutations and random generation, Theoretical Computer Science, 159, 1996, 29-42.
Programs
-
Magma
[2^(n-1)*(&+[j*Factorial(j)/2^j: j in [1..n-1]]): n in [1..30]]; // G. C. Greubel, May 02 2021
-
Maple
a:=proc(n) options operator, arrow: 2^(n-1)*(1+sum(j^2*factorial(j-1)/2^j, j= 1..n-1)) end proc: seq(a(n),n=1..20);
-
Mathematica
Table[2^(n-1)*(1 + Sum[j*j!/2^j, {j,n-1}]), {n,30}] (* G. C. Greubel, May 02 2021 *)
-
Sage
[2^(n-1)*sum(j*factorial(j)/2^j for j in (1..n-1)) for n in (1..30)] # G. C. Greubel, May 02 2021
Formula
a(n) = 2^(n-1) * (1 + Sum_{j=1..n-1} j*j!/2^j ).
a(n) = (n-1)!*(n-1) + 2*a(n-1) with a(1) = 1.
a(n) = Sum_{k=1..n} k*A140709(n,k).
(1 + x + 2*x^2 + 4*x^3 + 8*x^4 + ...)*(1 + 2*x + 6*x^2 + 24*x^3 + 120*x^4 + ...) = (1 + 3*x + 10*x^2 + 38*x^3 + 172*x^4 + ...) which is (Sum_{n>=0} A011782(n)*x^n) * (Sum_{n>=0} A000142(n+1)*x^n) = Sum_{n>=0} a(n+1)*x^n. - Gary W. Adamson, Feb 24 2012
a(n) = Sum_{j=0..n} (j+1)!*A011782(n-j) = (n+1)! + Sum_{j=0..n-1} 2^(n-k-1)*(j+1)!. - G. C. Greubel, May 03 2021
D-finite with recurrence a(n) +(-n-3)*a(n-1) +3*n*a(n-2) +2*(-n+2)*a(n-3)=0. - R. J. Mathar, Jul 26 2022
Comments