cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A140725 Inverse binomial transform of (0 followed by A037481).

Original entry on oeis.org

0, 1, 4, 10, 34, 94, 298, 862, 2650, 7822, 23722, 70654, 212986, 636910, 1914826, 5736286, 17225242, 51642958, 154994410, 464852158, 1394818618, 4183931566, 12552843274, 37656432670, 112973492314, 338912088334, 1016753042218
Offset: 0

Views

Author

Paul Curtz, Jul 12 2008

Keywords

Comments

From Sean A. Irvine, Jun 07 2025: (Start)
For n>=1, the number of walks of length n-1 starting at vertex 1 (or, by symmetry, vertex 4) in the graph K_{1,1,3}:
1---2
/|\ /
0 | X
\|/ \
4---3. (End)

Crossrefs

Cf. A083421 (bin. transform of (0 followed by A037481)).

Programs

  • Mathematica
    Join[{0},LinearRecurrence[{1,6},{1,4},26]] (* or *) a[0]=0;a[n_]:= ((-2)^n+4*3^n)/10;Array[a,27,0] (* James C. McMahon, Jul 13 2025 *)

Formula

a(n)= (-1)^n*A091003(n), n>0.
a(n+1)-3*a(n) = (-1)^(n+1)*A000079(n-1), n>0.
|a(n+1)-3*a(n)| = A011782(n).
From R. J. Mathar, Jul 14 2008: (Start)
O.g.f.: (1+3*x)*x / ((1+2*x)*(1-3*x)).
a(n) = ((-2)^n+4*3^n)/10, n>0. (End)
a(n) = a(n-1)+6*a(n-2) for n>2, a(0)=0, a(1)=1, a(2)=4. - Philippe Deléham, Nov 17 2013
a(n) + a(n+1) = A140796(n). - Philippe Deléham, Nov 17 2013
a(n+1) = sum_{k=0..n} A108561(n,k)*(-3)^k. - Philippe Deléham, Nov 17 2013

Extensions

Edited and extended by R. J. Mathar, Jul 14 2008