A140725 Inverse binomial transform of (0 followed by A037481).
0, 1, 4, 10, 34, 94, 298, 862, 2650, 7822, 23722, 70654, 212986, 636910, 1914826, 5736286, 17225242, 51642958, 154994410, 464852158, 1394818618, 4183931566, 12552843274, 37656432670, 112973492314, 338912088334, 1016753042218
Offset: 0
Keywords
Links
- Sean A. Irvine, Walks on Graphs.
Programs
-
Mathematica
Join[{0},LinearRecurrence[{1,6},{1,4},26]] (* or *) a[0]=0;a[n_]:= ((-2)^n+4*3^n)/10;Array[a,27,0] (* James C. McMahon, Jul 13 2025 *)
Formula
a(n)= (-1)^n*A091003(n), n>0.
a(n+1)-3*a(n) = (-1)^(n+1)*A000079(n-1), n>0.
|a(n+1)-3*a(n)| = A011782(n).
From R. J. Mathar, Jul 14 2008: (Start)
O.g.f.: (1+3*x)*x / ((1+2*x)*(1-3*x)).
a(n) = ((-2)^n+4*3^n)/10, n>0. (End)
a(n) = a(n-1)+6*a(n-2) for n>2, a(0)=0, a(1)=1, a(2)=4. - Philippe Deléham, Nov 17 2013
a(n) + a(n+1) = A140796(n). - Philippe Deléham, Nov 17 2013
a(n+1) = sum_{k=0..n} A108561(n,k)*(-3)^k. - Philippe Deléham, Nov 17 2013
Extensions
Edited and extended by R. J. Mathar, Jul 14 2008
Comments