A140736 Triangle read by rows, X^n * [1,0,0,0,...]; where X = a tridiagonal matrix with (1,0,1,0,1,...) in the main diagonal and (1,1,1,...) in the sub- and subsubdiagonals.
1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 1, 5, 4, 6, 3, 1, 1, 1, 7, 6, 15, 10, 10, 4, 1, 1, 1, 9, 8, 28, 21, 35, 20, 15, 5, 1, 1, 1, 11, 10, 45, 36, 84, 56, 70, 35, 21, 6, 1, 1, 1, 13, 12, 66, 55, 165, 120, 210, 126, 126, 56, 28, 7, 1
Offset: 0
Examples
First few rows of the triangle are: 1; 1, 1, 1; 1, 1, 3, 2, 1; 1, 1, 5, 4, 6, 3, 1; 1, 1, 7, 6, 15, 10, 10, 4, 1; 1, 1, 9, 8, 28, 21, 35, 20, 15, 5, 1; 1, 1, 11, 20, 45, 36, 84, 56, 70, 35, 21, 6, 1; 1, 1, 13, 12, 66, 55, 165, 120, 210, 126, 126, 56, 28, 7, 1; ...
Crossrefs
Programs
-
Maple
A140736 := proc(n,k) local X,r,c ; X := Matrix(2*n+1,2*n+1) ; for r from 1 to 2*n+1 do for c from 1 to 2*n+1 do if r = c then if type(r,'odd') then X[r,c] := 1 ; else X[r,c] := 0 ; end if ; elif r = c+1 or r=c+2 then X[r,c] := 1 ; end if; end do: end do: LinearAlgebra[MatrixPower](X,n) ; %[k,1] ; end proc: seq(seq( A140736(n,k),k=1..2*n+1),n=0..12) ; # R. J. Mathar, Nov 14 2023
Comments