A140757 Cumulative sums of A140756.
1, 0, 2, 3, 1, 4, 3, 5, 2, 6, 7, 5, 8, 4, 9, 8, 10, 7, 11, 6, 12, 13, 11, 14, 10, 15, 9, 16, 15, 17, 14, 18, 13, 19, 12, 20, 21, 19, 22, 18, 23, 17, 24, 16, 25, 24, 26, 23, 27, 22, 28, 21, 29, 20, 30, 31, 29, 32, 28, 33, 27, 34, 26, 35, 25, 36, 35, 37, 34, 38, 33, 39, 32, 40, 31, 41
Offset: 1
Examples
As a triangle: 1; 0, 2; 3, 1, 4; 3, 5, 2, 6; 7, 5, 8, 4, 9; 8, 10, 7, 11, 6, 12; ...
Links
- G. C. Greubel, Table of n, a(n) for n = 1..5000
Programs
-
Magma
A140756:=[(-1)^(n+k)*k: k in [1..n], n in [1..40]]; A140757:= func< n | (&+[A140756[j]: j in [1..n]]) >; [A140757(n): n in [1..100]]; // G. C. Greubel, Oct 21 2023
-
Mathematica
A140756[n_]:= With[{t=Floor[(-1+Sqrt[8*n-7])/2]}, (-1)^(Binomial[t+2, 2] -n)*(n -Binomial[t+1,2])]; A140757[n_]:= Sum[A140756[j], {j,n}]; Table[A140757[n], {n,100}] (* G. C. Greubel, Oct 21 2023 *)
-
PARI
T(n,k)=if((n-k)%2==0, ((n+1)^2\4)-((n-k)\2), ((n-1)^2\4)+((n-k)\2) ) \\ Paul D. Hanna
-
Python
from math import comb, isqrt def A140757(n): return ((a-1)**2>>2)+(c>>1) if (c:=(a:=(m:=isqrt(k:=n<<1))+(k>m*(m+1)))-(b:=n-comb(a,2)))&1 else ((a+1)**2>>2)-(c>>1) # Chai Wah Wu, Jun 09 2025
-
SageMath
A140756=flatten([[(-1)^(n+k)*k for k in range(1,n+1)] for n in range(1,41)]) def A140757(n): return sum(A140756[j] for j in range(n)) [A140757(n) for n in range(1,101)] # G. C. Greubel, Oct 21 2023
Formula
T(n,k) = floor((n+(-1)^{n-k})^2/4) - (-1)^{n-k}*floor((n-k)/2), as a triangle, with n >= 1, 1 <= k <= n.
Comments