A140773 Consider the products of all pairs of (not necessarily distinct) positive divisors of n. a(n) is the number of these products that divide n. a(n) also is the number of the products that are divisible by n.
1, 2, 2, 4, 2, 5, 2, 6, 4, 5, 2, 10, 2, 5, 5, 9, 2, 10, 2, 10, 5, 5, 2, 16, 4, 5, 6, 10, 2, 14, 2, 12, 5, 5, 5, 20, 2, 5, 5, 16, 2, 14, 2, 10, 10, 5, 2, 24, 4, 10, 5, 10, 2, 16, 5, 16, 5, 5, 2, 28, 2, 5, 10, 16, 5, 14, 2, 10, 5, 14, 2, 32, 2, 5, 10, 10, 5, 14, 2, 24, 9, 5, 2, 28, 5, 5, 5, 16, 2, 28, 5
Offset: 1
Keywords
Examples
The divisors of 20 are 1,2,4,5,10,20. There are 10 pairs of divisors whose product divides 20: 1*1=1, 1*2=2, 1*4=4, 1*5=5, 1*10=10, 1*20=20, 2*2=4, 2*5=10, 2*10=20, 4*5 = 20. Likewise, there are 10 products that are divisible by 20: 4*5=20, 2*10=20, 4*10=40, 10*10=100, 1*20=20, 2*20=40, 4*20=80, 5*20=100, 10*20=200, 20*20=400. So a(20) = 10.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000
- Chris W. Milson, Constructing Cuboids
- Chris W. Milson, A faster algorithm for a(n)
Crossrefs
Programs
-
Mathematica
(* first do *) Needs["Combinatorica`"] (* then *) f[n_] := Count[ n/Times @@@ Union[Sort /@ Tuples[Divisors@ n, 2]], Integer]; Array[f, 91] (* _Robert G. Wilson v, May 31 2008 *) d=Divisors[n]; r=Length[d]; Sum[Ceiling[Length[Divisors[d[[j]]]]/2],{j,r}] (* Manfred Boergens, Feb 25 2021 *)
-
PARI
\\ Two implementations, after the two different interpretations given by the author of the sequence: A140773v1(n) = { my(ds = divisors(n),s=0); for(i=1,#ds,for(j=i,#ds,if(!(n%(ds[i]*ds[j])),s=s+1))); s; } A140773v2(n) = { my(ds = divisors(n),s=0); for(i=1,#ds,for(j=i,#ds,if(!((ds[i]*ds[j])%n),s=s+1))); s; } \\ Antti Karttunen, May 19 2017
-
Python
# See C. W. Milson link.
Formula
a(n) = Sum_{m|n} A038548(m) = Sum_{m|n} ceiling(d(m)/2), where d(m) = number of divisors of m (A000005). - Manfred Boergens, Feb 25 2021
a(n) = Sum_{d|n} A135539(d,n/d). - Ridouane Oudra, Jul 10 2021
G.f.: Sum_{k>=1} Sum_{d|k} x^(k^2/d)/(1 - x^k). - Miles Wilson, Jun 12 2025
Extensions
Corrected and extended by Robert G. Wilson v, May 31 2008
Comments