cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A140773 Consider the products of all pairs of (not necessarily distinct) positive divisors of n. a(n) is the number of these products that divide n. a(n) also is the number of the products that are divisible by n.

Original entry on oeis.org

1, 2, 2, 4, 2, 5, 2, 6, 4, 5, 2, 10, 2, 5, 5, 9, 2, 10, 2, 10, 5, 5, 2, 16, 4, 5, 6, 10, 2, 14, 2, 12, 5, 5, 5, 20, 2, 5, 5, 16, 2, 14, 2, 10, 10, 5, 2, 24, 4, 10, 5, 10, 2, 16, 5, 16, 5, 5, 2, 28, 2, 5, 10, 16, 5, 14, 2, 10, 5, 14, 2, 32, 2, 5, 10, 10, 5, 14, 2, 24, 9, 5, 2, 28, 5, 5, 5, 16, 2, 28, 5
Offset: 1

Views

Author

Leroy Quet, May 29 2008

Keywords

Comments

Number of 3D grids of n congruent boxes with two different edge lengths, in a box, modulo rotation (cf. A034836 for cubes instead of boxes and A007425 for boxes with three different edge lengths; cf. A000005 for the 2D case). - Manfred Boergens, Feb 25 2021
Number of distinct faces obtainable by arranging n unit cubes into a cuboid. - Chris W. Milson, Mar 14 2021

Examples

			The divisors of 20 are 1,2,4,5,10,20. There are 10 pairs of divisors whose product divides 20: 1*1=1, 1*2=2, 1*4=4, 1*5=5, 1*10=10, 1*20=20, 2*2=4, 2*5=10, 2*10=20, 4*5 = 20. Likewise, there are 10 products that are divisible by 20: 4*5=20, 2*10=20, 4*10=40, 10*10=100, 1*20=20, 2*20=40, 4*20=80, 5*20=100, 10*20=200, 20*20=400. So a(20) = 10.
		

Crossrefs

Cf. A140774.
Cf. A369255 (parity), A369256 (positions of odd terms), A378213 (Dirichlet inverse).

Programs

  • Mathematica
    (* first do *) Needs["Combinatorica`"] (* then *) f[n_] := Count[ n/Times @@@ Union[Sort /@ Tuples[Divisors@ n, 2]], Integer]; Array[f, 91] (* _Robert G. Wilson v, May 31 2008 *)
    d=Divisors[n]; r=Length[d]; Sum[Ceiling[Length[Divisors[d[[j]]]]/2],{j,r}] (* Manfred Boergens, Feb 25 2021 *)
  • PARI
    \\ Two implementations, after the two different interpretations given by the author of the sequence:
    A140773v1(n) = { my(ds = divisors(n),s=0); for(i=1,#ds,for(j=i,#ds,if(!(n%(ds[i]*ds[j])),s=s+1))); s; }
    A140773v2(n) = { my(ds = divisors(n),s=0); for(i=1,#ds,for(j=i,#ds,if(!((ds[i]*ds[j])%n),s=s+1))); s; }
    \\ Antti Karttunen, May 19 2017
    
  • Python
    # See C. W. Milson link.

Formula

a(n) = Sum_{m|n} A038548(m) = Sum_{m|n} ceiling(d(m)/2), where d(m) = number of divisors of m (A000005). - Manfred Boergens, Feb 25 2021
a(n) = Sum_{d|n} A135539(d,n/d). - Ridouane Oudra, Jul 10 2021
a(n) = (A007425(n) + A046951(n))/2. - Ridouane Oudra, Apr 10 2024
G.f.: Sum_{k>=1} Sum_{d|k} x^(k^2/d)/(1 - x^k). - Miles Wilson, Jun 12 2025

Extensions

Corrected and extended by Robert G. Wilson v, May 31 2008