A325025 Numbers that are multi-perfect (A007691) and simultaneously harmonic (A001599).
1, 6, 28, 496, 672, 8128, 30240, 32760, 2178540, 23569920, 33550336, 45532800, 142990848, 459818240, 1379454720, 8589869056, 14182439040, 43861478400, 51001180160, 66433720320, 137438691328, 153003540480, 403031236608, 704575228896, 13661860101120
Offset: 1
Keywords
Examples
28 is a term because 28*tau(28)/sigma(28) = 28*6/56 = 3 (integer) and simultaneously 28*(28-tau(28))/sigma(28) = 28*(28-6)/56 = 11 (integer).
Links
- Amiram Eldar, Table of n, a(n) for n = 1..528
Crossrefs
Programs
-
Magma
[n: n in [1..1000000] | IsIntegral((NumberOfDivisors(n)) * n / SumOfDivisors(n)) and IsIntegral(SumOfDivisors(n)/n)]
-
Mathematica
Select[Range[10^6], And[Mod[DivisorSigma[1, #], #] == 0, IntegerQ@ HarmonicMean@ Divisors@ #] &] (* Michael De Vlieger, Mar 24 2019 *)
-
PARI
isok(n) = my(s=sigma(n)); !frac(s/n) && !frac(n*numdiv(n)/s); \\ Michel Marcus, Mar 24 2019
Comments