A140821 Coefficients of Hodge diamond GCD binomial product 'X' matrices as polynomials: matrix example; M={{2,0,2}. {0,2,0], {2,0,2}: M(d, x, y)= Sum[Sum[If[n == m, GCD[d - 1, m - 1], If[n == d - m + 1, GCD[d - 1, n - 1], 0]]*x^(n - 1)*y^(m - 1), {n, 1, d}], {m, 1, d}] .
2, 2, 4, 2, 4, 6, 6, 6, 6, 8, 8, 12, 8, 8, 10, 10, 20, 20, 10, 10, 12, 12, 60, 60, 60, 12, 12, 14, 14, 42, 70, 70, 42, 14, 14, 16, 16, 112, 112, 280, 112, 112, 16, 16, 18, 18, 72, 504, 252, 252, 504, 72, 18, 18
Offset: 1
Examples
{}, {2, 2}, {4, 2, 4}, {6, 6, 6, 6}, {8, 8, 12, 8, 8}, {10, 10, 20, 20, 10, 10}, {12, 12, 60, 60, 60, 12, 12}, {14, 14, 42, 70, 70, 42, 14, 14}, {16, 16, 112, 112, 280, 112, 112, 16, 16}, {18, 18, 72, 504, 252, 252, 504, 72, 18, 18}
Crossrefs
Cf. A140685.
Programs
-
Mathematica
M[d_, x_, y_] := Sum[Sum[If[n == m, Binomial[d - 1, m - 1]* GCD[d - 1, m - 1], If[n == d - m + 1, Binomial[d - 1, n - 1] *GCD[d - 1, n - 1], 0]]*x^(n - 1)*y^(m - 1), {n, d}], {m, d}]; Flatten@ Table[CoefficientList[M[d, x, 1], x], {d, 10}]