A140826 Arithmetic nondivisor means.
3, 4, 5, 7, 11, 13, 17, 18, 19, 20, 23, 24, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269
Offset: 1
Examples
n=18: numbers less than n which do not divide n are 4,5,7,8,10,11,12,13,14,15,16,17. antisigma_1(18) = 4+5+7+8+10+11+12+13+14+15+16+17 = 132. antisigma_0(18) = 12. 132/12 = 11 which is an integer so n=18 belongs to the sequence.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
A024816 := proc(n) n*(n+1)/2-numtheory[sigma](n) ; end: isA140826 := proc(n) if A024816(n) mod ( n-A000005(n)) = 0 then true; else false; fi; end: for n from 3 to 400 do if isA140826(n) then printf("%d,",n) ; fi; od: # R. J. Mathar, Dec 13 2008
-
Mathematica
Select[Range[3, 300], IntegerQ[(#^2 + # - 2 DivisorSigma[1, #])/(2# - 2 DivisorSigma[0, #])]&] (* Jean-François Alcover, May 11 2023 *)
-
PARI
isok(n) = (nnd = n - numdiv(n)) && !((n*(n+1)/2-sigma(n)) % nnd); \\ Michel Marcus, Nov 09 2013
Extensions
Inserted 20 and extended by R. J. Mathar, Dec 13 2008
Comments