cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A140870 8*P_4(2n), 8 times the Legendre Polynomial of order 4 at 2n.

Original entry on oeis.org

3, 443, 8483, 44283, 141443, 347003, 721443, 1338683, 2286083, 3664443, 5588003, 8184443, 11594883, 15973883, 21489443, 28323003, 36669443, 46737083, 58747683, 72936443, 89552003, 108856443, 131125283, 156647483, 185725443, 218675003, 255825443
Offset: 0

Views

Author

N. J. A. Sloane, Nov 17 2009

Keywords

Crossrefs

Cf. A144124.

Programs

  • Magma
    P := PolynomialRing(IntegerRing());
    LP4:=LegendrePolynomial(4);
    [ Evaluate(8*LP4, 2*n): n in [0..26] ]; // Klaus Brockhaus, Nov 18 2009
    
  • Magma
    [560*n^4 - 120*n^2 + 3: n in [0..30]]; // Vincenzo Librandi, Oct 04 2015
  • Maple
    A140870 := proc(n)
            8*orthopoly[P](4,2*n) ;
    end proc: # R. J. Mathar, Oct 24 2011
  • Mathematica
    Table[8 LegendreP[4,2n],{n,0,50}]
    LinearRecurrence[{5, -10, 10, -5, 1}, {3, 443, 8483, 44283, 141443}, 30] (* Vincenzo Librandi, Oct 04 2015 *)
  • PARI
    {for(n=0, 26, print1(subst(8*pollegendre(4), x, 2*n), ","))} \\ Klaus Brockhaus, Nov 21 2009
    

Formula

Legendre polynomial LP_4(x) = (35*x^4-30*x^2+3)/8. - Klaus Brockhaus, Nov 21 2009
From Klaus Brockhaus, Nov 21 2009: (Start)
a(n) = 560*n^4-120*n^2+3.
a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4)+13440 for n > 3; a(0)=3, a(1)=443, a(2)=8483, a(3)=44283.
G.f.: (3+428*x+6298*x^2+6268*x^3+443*x^4)/(1-x)^5. (End)