A140870 8*P_4(2n), 8 times the Legendre Polynomial of order 4 at 2n.
3, 443, 8483, 44283, 141443, 347003, 721443, 1338683, 2286083, 3664443, 5588003, 8184443, 11594883, 15973883, 21489443, 28323003, 36669443, 46737083, 58747683, 72936443, 89552003, 108856443, 131125283, 156647483, 185725443, 218675003, 255825443
Offset: 0
Links
- Eric W. Weisstein, Legendre Polynomial.
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Crossrefs
Cf. A144124.
Programs
-
Magma
P
:= PolynomialRing(IntegerRing()); LP4:=LegendrePolynomial(4); [ Evaluate(8*LP4, 2*n): n in [0..26] ]; // Klaus Brockhaus, Nov 18 2009 -
Magma
[560*n^4 - 120*n^2 + 3: n in [0..30]]; // Vincenzo Librandi, Oct 04 2015
-
Maple
A140870 := proc(n) 8*orthopoly[P](4,2*n) ; end proc: # R. J. Mathar, Oct 24 2011
-
Mathematica
Table[8 LegendreP[4,2n],{n,0,50}] LinearRecurrence[{5, -10, 10, -5, 1}, {3, 443, 8483, 44283, 141443}, 30] (* Vincenzo Librandi, Oct 04 2015 *)
-
PARI
{for(n=0, 26, print1(subst(8*pollegendre(4), x, 2*n), ","))} \\ Klaus Brockhaus, Nov 21 2009
Formula
Legendre polynomial LP_4(x) = (35*x^4-30*x^2+3)/8. - Klaus Brockhaus, Nov 21 2009
From Klaus Brockhaus, Nov 21 2009: (Start)
a(n) = 560*n^4-120*n^2+3.
a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4)+13440 for n > 3; a(0)=3, a(1)=443, a(2)=8483, a(3)=44283.
G.f.: (3+428*x+6298*x^2+6268*x^3+443*x^4)/(1-x)^5. (End)