cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A140960 a(n) = (2*(-1)^n - 2^(n+1) + 3*n*2^n)/9.

Original entry on oeis.org

0, 0, 2, 6, 18, 46, 114, 270, 626, 1422, 3186, 7054, 15474, 33678, 72818, 156558, 334962, 713614, 1514610, 3203982, 6757490, 14214030, 29826162, 62448526, 130489458, 272163726, 566697074, 1178133390, 2445745266, 5070447502, 10498808946, 21713445774, 44858547314
Offset: 0

Views

Author

Paul Curtz, Jul 26 2008

Keywords

Comments

Specify that a triangle has T(n,0) = T(n,n) = A001045(n), and T(r,c) = T(r-1,c-1) + T(r-1,c). The sum of the terms in the first n rows is a(n+1). - J. M. Bergot, May 21 2013
a(n) is the difference between the total number of runs of equal parts in the compositions of n+1, and the compositions of n+1. - Gregory L. Simay, May 04 2017

Programs

  • Magma
    [( 2*(-1)^n-2^(n+1)+3*n*2^n)/9: n in [0..40]]; // Vincenzo Librandi, Aug 08 2011
    
  • Mathematica
    LinearRecurrence[{3,0,-4},{0,0,2},40] (* Harvey P. Dale, Apr 14 2015 *)
  • PARI
    a(n)=(2*(-1)^n-2^(n+1)+3*n*2^n)/9 \\ Charles R Greathouse IV, Oct 16 2015

Formula

a(n+1) - 2*a(n) = A078008(n+1) = 2*A001045(n).
G.f.: 2*x^2/((1+x)*(1-2*x)^2).
a(n) = 2*A045883(n-1).
a(n) = 3*a(n-1) - 4*a(n-3), n > 2.
a(n) = A059570(n+1) - A011782(n+1). - Gregory L. Simay, May 04 2017

Extensions

Definition replaced with Lava's closed form of August 2008 by R. J. Mathar, Feb 11 2010