A140998 Triangle G(n, k), read by rows, for 0 <= k <= n, where G(n, 0) = G(n+1, n+1) = 1, G(n+2, n+1) = 2, and G(n+3, m) = G(n+1, m-1) + G(n+1, m) + G(n+2, m) for n >= 0 and m = 1..n+1.
1, 1, 1, 1, 2, 1, 1, 4, 2, 1, 1, 7, 5, 2, 1, 1, 12, 11, 5, 2, 1, 1, 20, 23, 12, 5, 2, 1, 1, 33, 46, 28, 12, 5, 2, 1, 1, 54, 89, 63, 29, 12, 5, 2, 1, 1, 88, 168, 137, 69, 29, 12, 5, 2, 1, 1, 143, 311, 289, 161, 70, 29, 12, 5, 2, 1, 1, 232, 567, 594, 367, 168, 70, 29, 12, 5, 2, 1
Offset: 0
Examples
Triangle begins (with rows for n >= 0 and columns for k >= 0): 1; 1, 1; 1, 2, 1; 1, 4, 2, 1; 1, 7, 5, 2, 1; 1, 12, 11, 5, 2, 1; 1, 20, 23, 12, 5, 2, 1; 1, 33, 46, 28, 12, 5, 2, 1; 1, 54, 89, 63, 29, 12, 5, 2, 1; 1, 88, 168, 137, 69, 29, 12, 5, 2, 1; 1, 143, 311, 289, 161, 70, 29, 12, 5, 2, 1;
Links
- G. C. Greubel, Rows n = 0..100 of triangle, flatten
- Juri-Stepan Gerasimov, Stepan's triangles and Pascal's triangle are connected by the recurrence relation ...
Crossrefs
Programs
-
Mathematica
G[n_,k_] := G[n,k] = Which[k==0 || k==n, 1, k==n-1, 2, True, G[n-2,k-1] + G[n-2,k] + G[n-1,k]]; Table[G[n,k], {n,0,12}, {k,0,n}] (* Jean-François Alcover, Jun 09 2019 *)
-
PARI
G(n,k) = if(k==0 || k==n, 1, if(k==n-1, 2, G(n-1, k) + G(n-2, k) + G(n-2, k-1))); for(n=0,12, for(k=0,n, print1(G(n,k), ", "))) \\ G. C. Greubel, Jun 09 2019
-
Sage
def G(n,k): if (k==0 or k==n): return 1 elif (k==n-1): return 2 else: return G(n-1, k) + G(n-2, k) + G(n-2, k-1) [[G(n,k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Jun 09 2019
Formula
From Petros Hadjicostas, Jun 10 2019: (Start)
G(n, k) = A140993(n+1, n-k+1) for 0 <= k <= n.
Let A(x,y) = Sum_{n,k >= 0} G(n, k)*x^n*y^k and B(x,y) = Sum_{n,k >= 1} A140993(n, k). Then A(x, y) = x^(-1) * B(x*y, y^(-1)). Thus, the g.f. of the current array is A(x, y) = (1 - x - x^2 + x^3*y)/((1 - x) * (1 - x*y) * (1 - x - x^2 - x^2*y)).
To find the g.f. of the k-th column (where k >= 0), we differentiate A(x, y) k times with respect to y, divide by k!, and substitute y = 0. For example, differentiating A(x, y) once w.r.t. y and setting y = 0, we get the g.f. of the k = 1 column: x/((1 - x)*(1 - x - x^2)). This is the g.f. of sequence (A000071(n+2): n >= 0) = (Fibonacci(n+2) - 1: n >= 0).
G.f. of column k = 2 is x^2*(1 - x + x^3)/((1 - x)*(1 - x - x^2)^2). Thus, column k = 2 is a shifted version of (A140992(n): n >= 0).
(End)
Extensions
Indices in the definition corrected by R. J. Mathar, Aug 02 2009
Name edited by Petros Hadjicostas, Jun 10 2019
Comments