cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A143837 a(n) = A066839(A141037(n)).

Original entry on oeis.org

1, 3, 4, 6, 7, 10, 11, 16, 21, 24, 26, 39, 45, 52, 66, 73, 93, 99, 102, 105, 110, 111, 118, 153, 180, 194, 240, 251, 301, 331, 435, 479, 487, 504, 513, 518, 525, 546, 748, 753, 921, 993, 1202, 1285, 1352, 1600, 1716, 1869, 1902, 2221, 2477, 2601, 2640, 2807
Offset: 1

Views

Author

J. Lowell, Sep 02 2008

Keywords

Examples

			The value of 16 in this sequence corresponds to 1+2+3+4+6 = 16 with 1, 2, 3, 4 and 6 being the divisors of 36 <= sqrt(36).
		

Crossrefs

Programs

  • Maple
    A066839 := proc(n) a := 0 ; for k in numtheory[divisors](n) do if k^2 <= n then a := a+k ; fi; od: a ; end: A143837 := proc() rec := -1; for n from 1 do r := A066839(n) ; if r > rec then printf("%d, ",r) ; rec := r; fi; od: end: A143837() ; # R. J. Mathar, Nov 03 2008
  • PARI
    lista(nn) = {my(ms = 0); for (n=1, nn, sqn = sqrt(n); s = sumdiv(n, d, d*(d<=sqn)); if (s > ms, print1(s, ", "); ms = s););} \\ Michel Marcus, Oct 05 2015

Formula

a(n) = A066839(A141037(n)).

Extensions

More terms from R. J. Mathar, Nov 03 2008
Name edited by Jon E. Schoenfield at the suggestion of Joerg Arndt, Oct 12 2015

A141406 Numbers n where the sum of all of its divisors < sqrt(n) exceeds the sum of all the divisors of m < sqrt(m) for all m

Original entry on oeis.org

1, 2, 6, 12, 20, 24, 30, 40, 48, 60, 72, 90, 120, 168, 180, 240, 336, 360, 420, 480, 504, 600, 630, 672, 720, 840, 1080, 1260, 1440, 1680, 2160, 2520, 3360, 3780, 3960, 4200, 4320, 4620, 5040, 6720, 7560, 9240, 10080, 12600, 13860, 15120, 18480, 20160
Offset: 1

Views

Author

Robert G. Wilson v, Aug 03 2008

Keywords

Comments

Conjecture: 3600 is the largest number that belongs to exactly one of this sequence and A141037. - J. Lowell, Aug 05 2020

Crossrefs

Cf. A141037.

Programs

  • Mathematica
    lst = {}; s = -1; Do[t = Plus @@ Select[Divisors@n, # < Sqrt@n &]; If[t > s, AppendTo[lst, n]; s = t], {n, 100000}]; lst
Showing 1-2 of 2 results.