A178743 a(n) = A000041(n) mod 10.
1, 1, 2, 3, 5, 7, 1, 5, 2, 0, 2, 6, 7, 1, 5, 6, 1, 7, 5, 0, 7, 2, 2, 5, 5, 8, 6, 0, 8, 5, 4, 2, 9, 3, 0, 3, 7, 7, 5, 5, 8, 3, 4, 1, 5, 4, 8, 4, 3, 5, 6, 3, 9, 1, 5, 6, 3, 4, 0, 0, 7, 5, 6, 9, 0, 8, 0, 9, 5, 5, 8, 5, 3, 9, 0, 4, 1, 3, 4, 0, 6, 7, 5, 9, 0, 7, 2, 3, 9, 5, 3, 9, 7, 7, 0, 9, 4, 0, 6, 5, 2, 6, 9, 0, 5
Offset: 0
Examples
From _Johannes W. Meijer_, Jul 08 2011: (Start) d p(N=200) p(N=2000) p(N=4000) p(N=6000) 0 0.16000 0.17750 0.17600 0.18067 1 0.08500 0.08150 0.08125 0.07833 2 0.08000 0.08400 0.08075 0.08033 3 0.10000 0.08350 0.08150 0.07917 4 0.05500 0.08050 0.07950 0.08233 5 0.18500 0.16900 0.17625 0.17817 6 0.08500 0.07500 0.07725 0.07867 7 0.09000 0.08600 0.08700 0.08283 8 0.06500 0.07650 0.07450 0.07517 9 0.09500 0.08650 0.08600 0.08433 Total 1.00000 1.00000 1.00000 1.00000 (End)
References
- Robert Kanigel, The man who knew infinity: A life of the genius Ramanujan (1991) pp. 246-254 and pp. 299-307.
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..10000
- Scott Ahlgren and Ken Ono, Addition and Counting: The Arithmetic of Partitions, Notices of the AMS, 48 (2001) pp. 978-984.
- Eric Weisstein's World of Mathematics, Partition Function P Congruences
- Index entries for sequences related to final digits of numbers
- Index entries for sequences related to Benford's law
Crossrefs
Cf. A141053 (F(5*n+3) and Benford’s Law). - Johannes W. Meijer, Jul 08 2011
Programs
-
Mathematica
Table[ Mod[ PartitionsP@n, 10], {n, 0, 111}]
-
PARI
a(n) = numbpart(n) % 10; \\ Michel Marcus, Apr 21 2019
Formula
a(n) = p(n) mod 10 with p(n) = A000041(n) the partition function.
Extensions
Edited by N. J. A. Sloane, Jun 08 2010
Comments