cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A178743 a(n) = A000041(n) mod 10.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 1, 5, 2, 0, 2, 6, 7, 1, 5, 6, 1, 7, 5, 0, 7, 2, 2, 5, 5, 8, 6, 0, 8, 5, 4, 2, 9, 3, 0, 3, 7, 7, 5, 5, 8, 3, 4, 1, 5, 4, 8, 4, 3, 5, 6, 3, 9, 1, 5, 6, 3, 4, 0, 0, 7, 5, 6, 9, 0, 8, 0, 9, 5, 5, 8, 5, 3, 9, 0, 4, 1, 3, 4, 0, 6, 7, 5, 9, 0, 7, 2, 3, 9, 5, 3, 9, 7, 7, 0, 9, 4, 0, 6, 5, 2, 6, 9, 0, 5
Offset: 0

Views

Author

Robert G. Wilson v, Jun 08 2010

Keywords

Comments

From Johannes W. Meijer, Jul 08 2011: (Start)
We observe for the last digit a(n) of the partition function p(n) = A000041(n) that the probabilities of p(d = 0) = 0.18 and p(d = 5) = 0.18 while for the other digits p(d = 1, 2, 3, 4, 6, 7, 8, 9) = 0.08, see the examples. Ramanujan, who had access to the first two hundred p(n) thanks to MacMahon, observed this anomaly and subsequently proved that p(5*n+4) mod 5 = 0, see the references and links.
The first digit of the partition function p(n) follows Benford’s Law. This law states that the probability of having first digit d, 1 <= d <= 9, is p(d) = log_10(1+1/d), see the crossrefs. (End)

Examples

			From _Johannes W. Meijer_, Jul 08 2011: (Start)
d     p(N=200) p(N=2000) p(N=4000) p(N=6000)
0     0.16000   0.17750   0.17600   0.18067
1     0.08500   0.08150   0.08125   0.07833
2     0.08000   0.08400   0.08075   0.08033
3     0.10000   0.08350   0.08150   0.07917
4     0.05500   0.08050   0.07950   0.08233
5     0.18500   0.16900   0.17625   0.17817
6     0.08500   0.07500   0.07725   0.07867
7     0.09000   0.08600   0.08700   0.08283
8     0.06500   0.07650   0.07450   0.07517
9     0.09500   0.08650   0.08600   0.08433
Total 1.00000   1.00000   1.00000   1.00000 (End)
		

References

  • Robert Kanigel, The man who knew infinity: A life of the genius Ramanujan (1991) pp. 246-254 and pp. 299-307.

Crossrefs

Cf. A141053 (F(5*n+3) and Benford’s Law). - Johannes W. Meijer, Jul 08 2011

Programs

  • Mathematica
    Table[ Mod[ PartitionsP@n, 10], {n, 0, 111}]
  • PARI
    a(n) = numbpart(n) % 10; \\ Michel Marcus, Apr 21 2019

Formula

a(n) = p(n) mod 10 with p(n) = A000041(n) the partition function.

Extensions

Edited by N. J. A. Sloane, Jun 08 2010
Showing 1-1 of 1 results.